Expasy logo

UniProtKB/Swiss-Prot variant pages

UniProtKB/Swiss-Prot P38398: Variant p.Leu758Phe

Breast cancer type 1 susceptibility protein
Gene: BRCA1
Feedback?
Variant information Variant position: help 758 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Type of variant: help US The variants are classified into three categories: LP/P, LB/B and US.
  • LP/P: likely pathogenic or pathogenic.
  • LB/B: likely benign or benign.
  • US: uncertain significance

Residue change: help From Leucine (L) to Phenylalanine (F) at position 758 (L758F, p.Leu758Phe). Indicates the amino acid change of the variant. The one-letter and three-letter codes for amino acids used in UniProtKB/Swiss-Prot are those adopted by the commission on Biochemical Nomenclature of the IUPAC-IUB.
Physico-chemical properties: help Change from medium size and hydrophobic (L) to large size and aromatic (F) The physico-chemical property of the reference and variant residues and the change implicated.
BLOSUM score: help 0 The score within a Blosum matrix for the corresponding wild-type to variant amino acid change. The log-odds score measures the logarithm for the ratio of the likelihood of two amino acids appearing by chance. The Blosum62 substitution matrix is used. This substitution matrix contains scores for all possible exchanges of one amino acid with another:
  • Lowest score: -4 (low probability of substitution).
  • Highest score: 11 (high probability of substitution).
More information can be found on the following page

Variant description: help In a breast cancer sample; somatic mutation. Any additional useful information about the variant.


Sequence information Variant position: help 758 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Protein sequence length: help 1863 The length of the canonical sequence.
Location on the sequence: help VKVSNNAEDPKDLMLSGERV L QTERSVESSSISLVPGTDYG The residue change on the sequence. Unless the variant is located at the beginning or at the end of the protein sequence, both residues upstream (20) and downstream (20) of the variant will be shown.
Residue conservation: help The multiple alignment of the region surrounding the variant against various orthologous sequences.
Human                         VKVSNNAEDPKDLMLSGE-RVLQTERSVESSSISLVPGTDYG

Gorilla                       VKVSNNAEDPKDLMLSGE-RVLQTERSVESSSISLVPGTDY

                              TQVSDSTRDPKELVLSGG-RGLQTERSVESTSISLVLDTDY

Rhesus macaque                VKVSNNAKDPKDLMLSGE-RVLQTERSVESSSISLVPDTDY

Chimpanzee                    VKVSNNAEDPKDLMLSGE-RVLQTERSVESSSISLVPGTDY

Mouse                         RQMSDSAKELGDRVLGGEPSGKTTDRSEESTSVSLVSDTDY

Rat                           CQMPDNNKELGDLVLGGEPSGKPTEPSEESTSVSLVPDTDY

Bovine                        IQVSNSTKDPKDLILREG-KALQIERSVESTNISLVPDTDY

Caenorhabditis elegans        YKISR--EELKNV----------------------------

Sequence annotation in neighborhood: help The regions or sites of interest surrounding the variant. In general the features listed are posttranslational modifications, binding sites, enzyme active sites, local secondary structure or other characteristics reported in the cited references. The "Sequence annotation in neighborhood" lines have a fixed format:
  • Type: the type of sequence feature.
  • Positions: endpoints of the sequence feature.
  • Description: contains additional information about the feature.
TypePositionsDescription
Chain 1 – 1863 Breast cancer type 1 susceptibility protein
Modified residue 753 – 753 Phosphoserine
Cross 739 – 739 Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO2)
Alternative sequence 64 – 1863 Missing. In isoform 2.
Alternative sequence 224 – 1365 Missing. In isoform 5.
Alternative sequence 264 – 1366 Missing. In isoform 3 and isoform 6.



Literature citations
The consensus coding sequences of human breast and colorectal cancers.
Sjoeblom T.; Jones S.; Wood L.D.; Parsons D.W.; Lin J.; Barber T.D.; Mandelker D.; Leary R.J.; Ptak J.; Silliman N.; Szabo S.; Buckhaults P.; Farrell C.; Meeh P.; Markowitz S.D.; Willis J.; Dawson D.; Willson J.K.V.; Gazdar A.F.; Hartigan J.; Wu L.; Liu C.; Parmigiani G.; Park B.H.; Bachman K.E.; Papadopoulos N.; Vogelstein B.; Kinzler K.W.; Velculescu V.E.;
Science 314:268-274(2006)
Cited for: VARIANTS [LARGE SCALE ANALYSIS] PHE-30; PHE-758 AND CYS-778;
Disclaimer: Any medical or genetic information present in this entry is provided for research, educational and informational purposes only. They are not in any way intended to be used as a substitute for professional medical advice, diagnostic, treatment or care.