
Package ‘pROC’
April 6, 2014

Type Package

Title display and analyze ROC curves

Version 1.7.2

Date 2014-04-05

Encoding UTF-8

Depends R (>= 2.13)

Imports plyr, utils, methods, Rcpp (>= 0.11.1)

Suggests microbenchmark, tcltk, MASS, logcondens, doMC, doSNOW

LinkingTo Rcpp

Author Xavier Robin, Natacha Turck, Alexandre Hainard, Natalia Tiberti, Frédérique Lisacek, Jean-
Charles Sanchez and Markus Müller.

Maintainer Xavier Robin <xavier@cbs.dtu.dk>

Description Tools for visualizing, smoothing and comparing receiver operating characteris-
tic (ROC curves). (Partial) area under the curve (AUC) can be compared with statisti-
cal tests based on U-statistics or bootstrap. Confidence intervals can be com-
puted for (p)AUC or ROC curves.

License GPL (>= 3)

URL http://expasy.org/tools/pROC/

LazyLoad yes

NeedsCompilation yes

Repository CRAN

Date/Publication 2014-04-06 07:28:00

1

http://expasy.org/tools/pROC/

2 pROC-package

R topics documented:
pROC-package . 2
are.paired . 8
aSAH . 10
auc . 11
ci . 14
ci.auc . 16
ci.coords . 20
ci.se . 23
ci.sp . 26
ci.thresholds . 29
coords . 32
cov.roc . 36
groupGeneric . 41
has.partial.auc . 42
lines.roc . 43
multiclass.roc . 44
plot.ci . 46
plot.roc . 48
power.roc.test . 54
print . 58
roc . 60
roc.test . 65
smooth.roc . 72
var.roc . 78

Index 83

pROC-package pROC

Description

Tools for visualizing, smoothing and comparing receiver operating characteristic (ROC curves).
(Partial) area under the curve (AUC) can be compared with statistical tests based on U-statistics or
bootstrap. Confidence intervals can be computed for (p)AUC or ROC curves. Sample size / power
computation for one or two ROC curves are available.

Details

The basic unit of the pROC package is the roc function. It will build a ROC curve, smooth it
if requested (if smooth=TRUE), compute the AUC (if auc=TRUE), the confidence interval (CI) if
requested (if ci=TRUE) and plot the curve if requested (if plot=TRUE).

The roc function will call smooth.roc, auc, ci and plot as necessary. See these individual func-
tions for the arguments that can be passed to them through roc. These function can be called
separately.

pROC-package 3

Two paired (that is roc objects with the same response) or unpaired (with different response)
ROC curves can be compared with the roc.test function.

Citation

If you use pROC in published research, please cite the following paper:

Xavier Robin, Natacha Turck, Alexandre Hainard, Natalia Tiberti, Frédérique Lisacek, Jean-Charles
Sanchez and Markus Müller (2011). “pROC: an open-source package for R and S+ to analyze and
compare ROC curves”. BMC Bioinformatics, 12, p. 77. DOI: 10.1186/1471-2105-12-77

Type citation("pROC") for a BibTeX entry.

The authors would be glad to hear how pROC is employed. You are kindly encouraged to notify
Xavier Robin <Xavier.Robin@unige.ch> about any work you publish.

Abbreviations

The following abbreviations are employed extensively in this package:

• ROC: receiver operating characteristic

• AUC: area under the ROC curve

• pAUC: partial area under the ROC curve

• CI: confidence interval

• SP: specificity

• SE: sensitivity

Functions

roc Build a ROC curve
are.paired Dertermine if two ROC curves are paired
auc Compute the area under the ROC curve
ci Compute confidence intervals of a ROC curve
ci.auc Compute the CI of the AUC
ci.coords Compute the CI of arbitrary coordinates
ci.se Compute the CI of sensitivities at given specificities
ci.sp Compute the CI of specificities at given sensitivities
ci.thresholds Compute the CI of specificity and sensitivity of thresholds
ci.coords Compute the CI of arbitrary coordinates
coords Coordinates of the ROC curve
cov Covariance between two AUCs
has.partial.auc Determine if the ROC curve have a partial AUC
lines.roc Add a ROC line to a ROC plot
plot.ci Plot CIs
plot Plot a ROC curve
print Print a ROC curve object
roc.test Compare the AUC of two ROC curves
smooth Smooth a ROC curve
var Variance of the AUC

http://dx.doi.org/10.1186/1471-2105-12-77

4 pROC-package

Dataset

This package comes with a dataset of 141 patients with aneurysmal subarachnoid hemorrhage:
aSAH.

Installing and using

To install this package, make sure you are connected to the internet and issue the following com-
mand in the R prompt:

install.packages("pROC")

To load the package in R:

library(pROC)

Bootstrap

All the bootstrap operations for significance testing, confidence interval, variance and covariance
computation are performed with non-parametric stratified or non-stratified resampling (according
to the stratified argument) and with the percentile method, as described in Carpenter and Bithell
(2000) sections 2.1 and 3.3.

Stratification of bootstrap can be controlled with boot.stratified. In stratified bootstrap (the
default), each replicate contains the same number of cases and controls than the original sample.
Stratification is especially useful if one group has only little observations, or if groups are not
balanced.

The number of bootstrap replicates is controlled by boot.n. Higher numbers will give a more
precise estimate of the significance tests and confidence intervals but take more time to compute.
2000 is recommanded by Carpenter and Bithell (2000) for confidence intervals. In our experience
this is sufficient for a good estimation of the first significant digit only, so we recommend the use
of 10000 bootstrap replicates to obtain a good estimate of the second significant digit whenever
possible.

Progress bars: A progressbar shows the progress of bootstrap operations. It is handled by the
plyr package (Wickham, 2011), and is created by the progress_* family of functions. Sensible
defaults are guessed during the package loading:

• In non-interactive mode, no progressbar is displayed.
• In embedded GNU Emacs “ESS”, a txtProgressBar

• In Windows, a winProgressBar bar.
• In other systems with a graphical display, a tkProgressBar.
• In systems without a graphical display, a txtProgressBar.

pROC-package 5

The default can be changed with the option “pROCProgress”. The option must be a list with a
name item setting the type of progress bar (“none”, “win”, “tk” or “text”). Optional items of the
list are “width”, “char” and “style”, corresponding to the arguments to the underlying progressbar
functions. For example, to force a text progress bar:

options(pROCProgress = list(name = "text", width = NA, char = "=", style = 3)

To inhibit the progress bars completely:

options(pROCProgress = list(name = "none"))

Handling large datasets

Versions 1.6 and 1.7 of pROC focused on execution speed to handle large datasets. Let’s say we
have the following dataset with 100 thousands observations:

response <- round(runif(1E5))
predictor <- rnorm(1E5)
system.time(rocobj <- roc(response, predictor)) # Very slow!

Choosing an algorithm for roc:
By default, pROC uses an algorithm that linearly depends on the number of thresholds. An naive
optimization is to reduce the precision of the predictor by generating ties in the data

system.time(rocobj <- roc(response, round(predictor))) # Faster - but losing precision

Since version 1.6, pROC contains an alternative algorithm with an overhead growing linearly as
a function of the number of observations. Use the algorithm=2 arguments when calling roc.

system.time(rocobj <- roc(response, predictor, algorithm = 2)) # Better

When unsure about the fastest algorithm, use algorithm=0 to choose between 2 and 3. Make
sure microbenchmark is installed. Beware, this is very slow as it will repeat the computation 10
times to obtain a decent estimate of each algorithm speed.

if (!require(microbenchmark))
install.packages("microbenchmark")

rocobj <- roc(response, round(predictor), algorithm = 0)
rocobj <- roc(response, predictor, algorithm = 0) # Very slow!

Boostrap: Bootstrap is typically slow because it involves repeatedly computing the ROC curve
(or a part of it).
Some bootstrap functions are faster than others. Typically, ci.thresholds is the fastest, and
ci.coords the slowest. Use ci.coords only if the CI you need cannot be computed by the
specialized CI functions ci.thresholds, ci.se and ci.sp. Note that ci.auc cannot be replaced
anyway.
A naive way to speed-up the boostrap is by removing the progress bar:

6 pROC-package

rocobj <- roc(response, round(predictor))
system.time(ci(rocobj))
system.time(ci(rocobj, progress = "none"))

It is of course possible to reduce the number of boostrap iterations. See the boot.n argument to
ci. This will reduce the precision of the bootstrap estimate.

Parallel processing: Bootstrap operations can be performed in parallel. The backend provided
by the plyr package is used, which in turn relies on the foreach package.
To enable parallell processing, you first need to load an adaptor for the foreach package (doMC,
doMPI, doParallel, doRedis, doRNG or doSNOW)), register the backend, and set parallel=TRUE.

library(doMC)
registerDoMC(4)
ci(rocobj, method="bootstrap", parallel=TRUE)

Progress bars are not available when parallel processing is enabled.

Using DeLong instead of boostrap: DeLong is an asymptotically exact method to evaluate the
uncertainty of an AUC (DeLong et al. (1988)) which is typically faster than boostrapping. By
default, pROC will choose the DeLong method whenever possible.
Since version 1.7, pROC does not allocate an m * n matrix (with m = number of controls and
n = number of case observations) in all DeLong computations, so it is in practice nearly always
faster than bootstrapping. However it still goes with O(m*n) so it might be slower than bootstrap
in some very edge cases (i.e. when generating a roc curve with algorithm=3 that has a small
number of thresholds but a large number of observations).

rocobj <- roc(response, round(predictor), algorithm=3)
system.time(ci(rocobj, method="delong"))
system.time(ci(rocobj, method="bootstrap", parallel = TRUE))

Author(s)

Xavier Robin, Natacha Turck, Jean-Charles Sanchez and Markus Müller

Maintainer: Xavier Robin <Xavier.Robin@unige.ch>

References

James Carpenter and John Bithell (2000) “Bootstrap condence intervals: when, which, what? A
practical guide for medical statisticians”. Statistics in Medicine 19, 1141–1164. DOI: 10.1002/(SICI)1097-
0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F.

Elisabeth R. DeLong, David M. DeLong and Daniel L. Clarke-Pearson (1988) “Comparing the areas
under two or more correlated receiver operating characteristic curves: a nonparametric approach”.
Biometrics 44, 837–845.

Tom Fawcett (2006) “An introduction to ROC analysis”. Pattern Recognition Letters 27, 861–874.
DOI: 10.1016/j.patrec.2005.10.010.

http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1016/j.patrec.2005.10.010

pROC-package 7

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for
R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-
2105-12-77.

Hadley Wickham (2011) “The Split-Apply-Combine Strategy for Data Analysis”. Journal of Sta-
tistical Software, 40, 1–29. URL: www.jstatsoft.org/v40/i01.

See Also

CRAN packages ROCR, verification or Bioconductor’s roc for ROC curves.

CRAN packages plyr, MASS and logcondens employed in this package.

Examples

data(aSAH)

Build a ROC object and compute the AUC
roc(aSAH$outcome, aSAH$s100b)
roc(outcome ~ s100b, aSAH)

Smooth ROC curve
roc(outcome ~ s100b, aSAH, smooth=TRUE)

more options, CI and plotting
roc1 <- roc(aSAH$outcome,

aSAH$s100b, percent=TRUE,
arguments for auc
partial.auc=c(100, 90), partial.auc.correct=TRUE,
partial.auc.focus="sens",
arguments for ci
ci=TRUE, boot.n=100, ci.alpha=0.9, stratified=FALSE,
arguments for plot
plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE,
print.auc=TRUE, show.thres=TRUE)

Add to an existing plot. Beware of 'percent' specification!
roc2 <- roc(aSAH$outcome, aSAH$wfns,

plot=TRUE, add=TRUE, percent=roc1$percent)

Coordinates of the curve
coords(roc1, "best", ret=c("threshold", "specificity", "1-npv"))
coords(roc2, "local maximas", ret=c("threshold", "sens", "spec", "ppv", "npv"))

Confidence intervals

CI of the AUC
ci(roc2)

Not run:
CI of the curve
sens.ci <- ci.se(roc1, specificities=seq(0, 100, 5))
plot(sens.ci, type="shape", col="lightblue")
plot(sens.ci, type="bars")

http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77
http://www.jstatsoft.org/v40/i01

8 are.paired

End(Not run)

need to re-add roc2 over the shape
plot(roc2, add=TRUE)

Not run:
CI of thresholds
plot(ci.thresholds(roc2))

End(Not run)

In parallel
if (require(doMC)) {

registerDoMC(2)
Not run: ci(roc2, method="bootstrap", parallel=TRUE)

}

Comparisons

Test on the whole AUC
roc.test(roc1, roc2, reuse.auc=FALSE)

Not run:
Test on a portion of the whole AUC
roc.test(roc1, roc2, reuse.auc=FALSE, partial.auc=c(100, 90),

partial.auc.focus="se", partial.auc.correct=TRUE)

With modified bootstrap parameters
roc.test(roc1, roc2, reuse.auc=FALSE, partial.auc=c(100, 90),

partial.auc.correct=TRUE, boot.n=1000, boot.stratified=FALSE)

End(Not run)

are.paired Are two ROC curves paired?

Description

This function determines if two ROC curves can be paired.

Usage

are.paired(...)
S3 method for class 'auc'
are.paired(roc1, roc2, ...)
S3 method for class 'smooth.roc'
are.paired(roc1, roc2, ...)
S3 method for class 'roc'

are.paired 9

are.paired(roc1, roc2, return.paired.rocs=FALSE,
reuse.auc = TRUE, reuse.ci = FALSE, reuse.smooth=TRUE, ...)

Arguments

roc1, roc2 the two ROC curves to compare. Either “roc”, “auc” or “smooth.roc” objects
(types can be mixed).

return.paired.rocs

if TRUE and the ROC curves can be paired, the two paired ROC curves with NAs
removed will be returned.

reuse.auc, reuse.ci, reuse.smooth

if return.paired.rocs=TRUE, determines if auc, ci and smooth.roc should
be re-computed (with the same parameters than the original ROC curves)

... additionnal arguments for are.paired.roc. Ignored in are.paired.roc

Details

Two ROC curves are paired if they are built on two variables observed on the same sample.

In practice, the paired status is granted if the response and levels vector of both ROC curves are
identical. If the responses are different, this can be due to missing values differing between the
curves. In this case, the function will strip all NAs in both curves and check for identity again.

It can raise false positives if the responses are identical but correspond to different patients.

Value

TRUE if roc1 and roc2 are paired, FALSE otherwise.

In addition, if TRUE and return.paired.rocs=TRUE, the following atributes are defined:

roc1, roc2 the two ROC curve with all NAs values removed in both curves.

See Also

roc, roc.test

Examples

data(aSAH)
aSAH.copy <- aSAH

artificially insert NAs for demonstration purposes
aSAH.copy$outcome[42] <- NA
aSAH.copy$s100b[24] <- NA
aSAH.copy$ndka[1:10] <- NA

Call roc() on the whole data
roc1 <- roc(aSAH.copy$outcome, aSAH.copy$s100b)
roc2 <- roc(aSAH.copy$outcome, aSAH.copy$ndka)
are.paired can still find that the curves were paired
are.paired(roc1, roc2) # TRUE

10 aSAH

Removing the NAs manually before passing to roc() un-pairs the ROC curves
nas <- is.na(aSAH.copy$outcome) | is.na(aSAH.copy$ndka)
roc2b <- roc(aSAH.copy$outcome[!nas], aSAH.copy$ndka[!nas])
are.paired(roc1, roc2b) # FALSE

Getting the two paired ROC curves with additional smoothing and ci options
roc2$ci <- ci(roc2)
paired <- are.paired(smooth(roc1), roc2, return.paired.rocs=TRUE, reuse.ci=TRUE)
paired.roc1 <- attr(paired, "roc1")
paired.roc2 <- attr(paired, "roc2")

aSAH Subarachnoid hemorrhage data

Description

This dataset summarizes several clinical and one laboratory variable of 113 patients with an aneurys-
mal subarachnoid hemorrhage.

Usage

aSAH

Format

A data.frame containing 113 observations of 7 variables.

Source

Natacha Turck, Laszlo Vutskits, Paola Sanchez-Pena, Xavier Robin, Alexandre Hainard, Marianne
Gex-Fabry, Catherine Fouda, Hadiji Bassem, Markus Mueller, Frédérique Lisacek, Louis Puybas-
set and Jean-Charles Sanchez (2010) “A multiparameter panel method for outcome prediction fol-
lowing aneurysmal subarachnoid hemorrhage”. Intensive Care Medicine 36(1), 107–115. DOI:
10.1007/s00134-009-1641-y.

See Also

Other examples can be found in all the documentation pages of this package: roc, auc, ci, ci.auc,
ci.se, ci.sp, ci.thresholds, coords, plot.ci, plot.roc, print.roc, roc.test and smooth.

An example analysis with pROC is shown in:

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for
R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-
2105-12-77

http://dx.doi.org/10.1007/s00134-009-1641-y
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77

auc 11

Examples

load the dataset
data(aSAH)

Gender, outcome and set
with(aSAH, table(gender, outcome))

Age
with(aSAH, by(age, outcome, mean))
with(aSAH, by(age, outcome,

function(x) sprintf("mean: %.1f (+/- %.1f), median: %.1f (%i-%i)",
mean(x), sd(x), median(x), min(x), max(x))))

WFNS score
with(aSAH, table(wfns=ifelse(wfns<=2, "1-2", "3-4-5"), outcome))

auc Compute the area under the ROC curve

Description

This function computes the numeric value of area under the ROC curve (AUC) with the trapezoidal
rule. Two syntaxes are possible: one object of class “roc”, or either two vectors (response, predictor)
or a formula (response~predictor) as in the roc function. By default, the total AUC is computed,
but a portion of the ROC curve can be specified with partial.auc.

Usage

auc(...)
S3 method for class 'roc'
auc(roc, partial.auc=FALSE, partial.auc.focus=c("specificity",
"sensitivity"), partial.auc.correct=FALSE, ...)
S3 method for class 'smooth.roc'
auc(smooth.roc, ...)
S3 method for class 'multiclass.roc'
auc(multiclass.roc, ...)
S3 method for class 'formula'
auc(formula, data, ...)
Default S3 method:
auc(response, predictor, ...)

Arguments

roc, smooth.roc, multiclass.roc

a “roc” object from the roc function, a “smooth.roc” object from the smooth.roc
function, or a “multiclass.roc” from the multiclass.roc function.

12 auc

response, predictor

arguments for the roc function.
formula, data a formula (and possibly a data object) of type response~predictor for the roc

function.
partial.auc either FALSE (default: consider total area) or a numeric vector of length 2:

boundaries of the AUC to consider in [0,1] (or [0,100] if percent is TRUE).
partial.auc.focus

if partial.auc is not FALSE and a partial AUC is computed, specifies if partial.auc
specifies the bounds in terms of specificity (default) or sensitivity. Can be short-
ened to spec/sens or even sp/se. Ignored if partial.auc=FALSE.

partial.auc.correct

logical indicating if the correction of AUC must be applied in order to have a
maximal AUC of 1.0 and a non-discriminant AUC of 0.5 whatever the partial.auc
defined. Ignored if partial.auc=FALSE. Default: FALSE.

... further arguments passed to or from other methods, especially arguments for
roc when calling auc.default, auc.formula, auc.smooth.roc. Note that the
auc argument of roc is not allowed. Unused in auc.roc.

Details

This function is typically called from roc when auc=TRUE (default). It is also used by ci. When
it is called with two vectors (response, predictor) or a formula (response~predictor) arguments, the
roc function is called and only the AUC is returned.

By default the total area under the curve is computed, but a partial AUC (pAUC) can be specified
with the partial.auc argument. It specifies the bounds of specificity or sensitivity (depending on
partial.auc.focus) between which the AUC will be computed. As it specifies specificities or
sensitivities, you must adapt it in relation to the ’percent’ specification (see details in roc).

partial.auc.focus is ignored if partial.auc=FALSE (default). If a partial AUC is computed,
partial.auc.focus specifies if the bounds specified in partial.auc must be interpreted as sen-
sitivity or specificity. Any other value will produce an error. It is recommended to plot the ROC
curve with auc.polygon=TRUE in order to make sure the specification is correct.

If a pAUC is defined, it can be standardized (corrected). This correction is controled by the
partial.auc.correct argument. If partial.auc.correct=TRUE, the correction by McClish will
be applied:

1 + auc−min
max−min

2

where auc is the uncorrected pAUC computed in the region defined by partial.auc, min is the
value of the non-discriminant AUC (with an AUC of 0.5 or 50 in the region and max is the maximum
possible AUC in the region. With this correction, the AUC will be 0.5 if non discriminant and 1.0
if maximal, whatever the region defined. This correction is fully compatible with percent.

Value

The numeric AUC value, of class c("auc", "numeric") (or c("multiclass.auc", "numeric")
if a “multiclass.roc” was supplied), in fraction of the area or in percent if percent=TRUE, with the
following attributes:

auc 13

partial.auc if the AUC is full (FALSE) or partial (and in this case the bounds), as defined in
argument.

partial.auc.focus

only for a partial AUC, if the bound specifies the sensitivity or specificity, as
defined in argument.

partial.auc.correct

only for a partial AUC, was it corrected? As defined in argument.

percent whether the AUC is given in percent or fraction.

roc the original ROC curve, as a “roc”, “smooth.roc” or “multiclass.roc” object.

Smoothed ROC curves

There is no difference in the computation of the area under a smoothed ROC curve, except for
curves smoothed with method="binomial". In this case and only if a full AUC is requested, the
classical binormal AUC formula is applied:

auc = φ
a√

1 + b2
.

If the ROC curve is smoothed with any other method or if a partial AUC is requested, the empirical
AUC described in the previous section is applied.

Multi-class AUCs

With an object of class “multiclass.roc”, a multi-class AUC is computed as an average AUC as
defined by Hand and Till (equation 7).

auc =
2

c(c− 1)

∑
aucs

with aucs all the pairwise roc curves.

References

Tom Fawcett (2006) “An introduction to ROC analysis”. Pattern Recognition Letters 27, 861–874.
DOI: 10.1016/j.patrec.2005.10.010.

David J. Hand and Robert J. Till (2001). A Simple Generalisation of the Area Under the ROC
Curve for Multiple Class Classification Problems. Machine Learning 45(2), p. 171–186. DOI:
10.1023/A:1010920819831.

Donna Katzman McClish (1989) “Analyzing a Portion of the ROC Curve”. Medical Decision Mak-
ing 9(3), 190–195. DOI: 10.1177/0272989X8900900307.

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for
R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-
2105-12-77.

See Also

roc, ci.auc

http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1023/A:1010920819831
http://dx.doi.org/10.1177/0272989X8900900307
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77

14 ci

Examples

data(aSAH)

Syntax (response, predictor):
auc(aSAH$outcome, aSAH$s100b)

With a roc object:
rocobj <- roc(aSAH$outcome, aSAH$s100b)
Full AUC:
auc(rocobj)
Partial AUC:
auc(rocobj, partial.auc=c(1, .8), partial.auc.focus="se", partial.auc.correct=TRUE)

Alternatively, you can get the AUC directly from roc():
roc(aSAH$outcome, aSAH$s100b)$auc
roc(aSAH$outcome, aSAH$s100b,

partial.auc=c(1, .8), partial.auc.focus="se",
partial.auc.correct=TRUE)$auc

ci Compute the confidence interval of a ROC curve

Description

This function computes the confidence interval (CI) of a ROC curve. The of argument controls
the type of CI that will be computed. By default, the 95% CI are computed with 2000 stratified
bootstrap replicates.

Usage

ci(...)
S3 method for class 'roc'
ci(roc, of = c("auc", "thresholds", "sp", "se", "coords"), ...)
S3 method for class 'smooth.roc'
ci(smooth.roc, of = c("auc", "sp", "se", "coords"), ...)
S3 method for class 'formula'
ci(formula, data, ...)
Default S3 method:
ci(response, predictor, ...)

Arguments

roc, smooth.roc

a “roc” object from the roc function, or a “smooth.roc” object from the smooth.roc
function.

response, predictor

arguments for the roc function.

ci 15

formula, data a formula (and possibly a data object) of type response~predictor for the roc
function.

of The type of confidence interval. One of “auc”, “thresholds”, “sp”, “se” or
“coords”. Note that confidence interval on “thresholds” are not available for
smoothed ROC curves.

... further arguments passed to or from other methods, especially auc, roc, and the
specific ci functions ci.auc, ci.se, ci.sp and ci.thresholds.

Details

ci.formula and ci.default are convenience methods that build the ROC curve (with the roc
function) before calling ci.roc. You can pass them arguments for both roc and ci.roc. Simply
use ci that will dispatch to the correct method.

This function is typically called from roc when ci=TRUE (not by default). Depending on the of ar-
gument, the specific ci functions ci.auc, ci.thresholds, ci.sp, ci.se or ci.coords are called.

When the ROC curve has an auc of 1 (or 100%), the confidence interval will always be null (there
is no interval). This is true for both “delong” and “bootstrap” methods that can not properly assess
the variance in this case. This result is misleading, as the variance is of course not null. A warning
will be displayed to inform of this condition, and of the misleading output.

Value

The return value of the specific ci functions ci.auc, ci.thresholds, ci.sp, ci.se or ci.coords,
depending on the of argument.

References

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for
R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-
2105-12-77.

See Also

roc, auc, ci.auc, ci.thresholds, ci.sp, ci.se, ci.coords

Examples

data(aSAH)

Syntax (response, predictor):
ci(aSAH$outcome, aSAH$s100b)

With a roc object:
rocobj <- roc(aSAH$outcome, aSAH$s100b)

Of an AUC
ci(rocobj)
ci(rocobj, of="auc")
this is strictly equivalent to:

http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77

16 ci.auc

ci.auc(rocobj)

Of thresholds, sp, se...
Not run:
ci(rocobj, of="thresholds")
ci(rocobj, of="thresholds", thresholds=0.51)
ci(rocobj, of="thresholds", thresholds="all")
ci(rocobj, of="sp", sensitivities=c(.95, .9, .85))
ci(rocobj, of="se")

End(Not run)

Alternatively, you can get the CI directly from roc():
rocobj <- roc(aSAH$outcome, aSAH$s100b, ci=TRUE, of="auc")
rocobj$ci

ci.auc Compute the confidence interval of the AUC

Description

This function computes the confidence interval (CI) of an area under the curve (AUC). By default,
the 95% CI is computed with 2000 stratified bootstrap replicates.

Usage

ci.auc(...)
S3 method for class 'roc'
ci.auc(roc, conf.level=0.95, method=c("delong",
"bootstrap"), boot.n = 2000, boot.stratified = TRUE, reuse.auc=TRUE,
progress = getOption("pROCProgress")$name, parallel=FALSE, ...)
S3 method for class 'smooth.roc'
ci.auc(smooth.roc, conf.level=0.95, boot.n=2000,
boot.stratified=TRUE, reuse.auc=TRUE,
progress=getOption("pROCProgress")$name, parallel=FALSE, ...)
S3 method for class 'auc'
ci.auc(auc, ...)
S3 method for class 'formula'
ci.auc(formula, data, ...)
Default S3 method:
ci.auc(response, predictor, ...)

Arguments

roc, smooth.roc

a “roc” object from the roc function, or a “smooth.roc” object from the smooth.roc
function.

ci.auc 17

auc an “auc” object from the auc function.

response, predictor

arguments for the roc function.

formula, data a formula (and possibly a data object) of type response~predictor for the roc
function.

conf.level the width of the confidence interval as [0,1], never in percent. Default: 0.95,
resulting in a 95% CI.

method the method to use, either “delong” or “bootstrap”. The first letter is sufficient. If
omitted, the appropriate method is selected as explained in details.

boot.n the number of bootstrap replicates. Default: 2000.

boot.stratified

should the bootstrap be stratified (default, same number of cases/controls in each
replicate than in the original sample) or not.

reuse.auc if TRUE (default) and the “roc” object contains an “auc” field, re-use these spec-
ifications for the test. If false, use optional ... arguments to auc. See details.

progress the name of progress bar to display. Typically “none”, “win”, “tk” or “text” (see
the name argument to create_progress_bar for more information), but a list
as returned by create_progress_bar is also accepted. See also the “Progress
bars” section of this package’s documentation.

parallel if TRUE, the bootstrap is processed in parallel, using parallel backend provided
by plyr (foreach).

... further arguments passed to or from other methods, especially arguments for roc
and roc.test.roc when calling roc.test.default or roc.test.formula.
Arguments for auc and txtProgressBar (only char and style) if applicable.

Details

This function computes the CI of an AUC. Two methods are available: “delong” and “bootstrap”
with the parameters defined in “roc$auc” to compute a CI. When it is called with two vectors
(response, predictor) or a formula (response~predictor) arguments, the roc function is called to
build the ROC curve first.

Default is to use “delong” method except for comparison of partial AUC and smoothed curves,
where bootstrap is used. Using “delong” for partial AUC and smoothed ROCs is not supported in
pROC (with smoothed ROCs, method is ignored, otherwise for pAUC a warning is produced and
“bootstrap” is employed instead).

With method="bootstrap", the function calls auc boot.n times. For more details about the boot-
strap, see the Bootstrap section in this package’s documentation.

For smoothed ROC curves, smoothing is performed again at each bootstrap replicate with the pa-
rameters originally provided. If a density smoothing was performed with user-provided density.cases
or density.controls the bootstrap cannot be performed and an error is issued.

With method="delong", the variance of the AUC is computed as defined by DeLong et al. (1988)
and the CI is deduced with qnorm.

18 ci.auc

Value

A numeric vector of length 3 and class “ci.auc”, “ci” and “numeric” (in this order), with the lower
bound, the median and the upper bound of the CI, and the following attributes:

conf.level the width of the CI, in fraction.

method the method employed.

boot.n the number of bootstrap replicates.
boot.stratified

whether or not the bootstrapping was stratified.

auc an object of class “auc” stored for reference about the compued AUC details
(partial, percent, ...)

The aucs item is not included in this list since version 1.2 for consistency reasons.

AUC specification

The comparison of the CI needs a specification of the AUC. This allows to compute the CI for full
or partial AUCs. The specification is defined by:

1. the “auc” field in the “roc” object if reuse.auc is set to TRUE (default). It is naturally inherited
from any call to roc and fits most cases.

2. passing the specification to auc with . . . (arguments partial.auc, partial.auc.correct
and partial.auc.focus). In this case, you must ensure either that the roc object do not
contain an auc field (if you called roc with auc=FALSE), or set reuse.auc=FALSE.

If reuse.auc=FALSE the auc function will always be called with ... to determine the specification,
even if the “roc” object do contain an auc field.

As well if the “roc” object do not contain an auc field, the auc function will always be called with
... to determine the specification.

Warning: if the roc object passed to ci contains an auc field and reuse.auc=TRUE, auc is not called
and arguments such as partial.auc are silently ignored.

Warnings

If method="delong" and the AUC specification specifies a partial AUC, the warning “Using De-
Long’s test for partial AUC is not supported. Using bootstrap test instead.” is issued. The method
argument is ignored and “bootstrap” is used instead.

If boot.stratified=FALSE and the sample has a large imbalance between cases and controls, it
could happen that one or more of the replicates contains no case or control observation, or that there
are not enough points for smoothing, producing a NA area. The warning “NA value(s) produced
during bootstrap were ignored.” will be issued and the observation will be ignored. If you have a
large imbalance in your sample, it could be safer to keep boot.stratified=TRUE.

Errors

If density.cases and density.controls were provided for smoothing, the error “Cannot com-
pute the statistic on ROC curves smoothed with density.controls and density.cases.” is issued.

ci.auc 19

References

James Carpenter and John Bithell (2000) “Bootstrap condence intervals: when, which, what? A
practical guide for medical statisticians”. Statistics in Medicine 19, 1141–1164. DOI: 10.1002/(SICI)1097-
0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F.

Elisabeth R. DeLong, David M. DeLong and Daniel L. Clarke-Pearson (1988) “Comparing the areas
under two or more correlated receiver operating characteristic curves: a nonparametric approach”.
Biometrics 44, 837–845.

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for
R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-
2105-12-77.

Hadley Wickham (2011) “The Split-Apply-Combine Strategy for Data Analysis”. Journal of Sta-
tistical Software, 40, 1–29. URL: www.jstatsoft.org/v40/i01.

See Also

roc, auc, ci

CRAN package plyr, employed in this function.

Examples

data(aSAH)

Syntax (response, predictor):
ci.auc(aSAH$outcome, aSAH$s100b)

With a roc object:
rocobj <- roc(aSAH$outcome, aSAH$s100b)
default values
ci.auc(rocobj)
ci(rocobj)
ci(auc(rocobj))
ci(rocobj$auc)
ci(rocobj$auc, method="delong")

Partial AUC and customized bootstrap:
ci.auc(aSAH$outcome, aSAH$s100b,

boot.n=100, conf.level=0.9, stratified=FALSE, partial.auc=c(1, .8),
partial.auc.focus="se", partial.auc.correct=TRUE)

Note that the following will NOT give a CI of the partial AUC:
ci.auc(rocobj, boot.n=500, conf.level=0.9, stratified=FALSE,

partial.auc=c(1, .8), partial.auc.focus="se", partial.auc.correct=TRUE)
This is because rocobj$auc is not a partial AUC.
Not run:
You can overcome this problem with reuse.auc:
ci.auc(rocobj, boot.n=500, conf.level=0.9, stratified=FALSE,

partial.auc=c(1, .8), partial.auc.focus="se", partial.auc.correct=TRUE,
reuse.auc=FALSE)

End(Not run)

http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77
http://www.jstatsoft.org/v40/i01

20 ci.coords

Alternatively, you can get the CI directly from roc():
rocobj <- roc(aSAH$outcome, aSAH$s100b, ci=TRUE, of="auc")
rocobj$ci

Not run:
On a smoothed ROC, the CI is re-computed automatically
smooth(rocobj)
Or you can compute a new one:
ci.auc(smooth(rocobj, method="density", reuse.ci=FALSE), boot.n=100)

End(Not run)

ci.coords Compute the confidence interval of arbitrary coordinates

Description

This function computes the confidence interval (CI) of the coordinates of a ROC curves with the
coords function. By default, the 95% CI are computed with 2000 stratified bootstrap replicates.

Usage

ci.coords(...)
S3 method for class 'roc'
ci.coords(roc, x,
input=c("threshold", "specificity", "sensitivity"),
ret=c("threshold", "specificity", "sensitivity"),
best.method=c("youden", "closest.topleft"), best.weights=c(1, 0.5),
conf.level=0.95, boot.n=2000,
boot.stratified=TRUE,
progress=getOption("pROCProgress")$name, ...)
S3 method for class 'formula'
ci.coords(formula, data, ...)
S3 method for class 'smooth.roc'
ci.coords(smooth.roc, x,
input=c("specificity", "sensitivity"), ret=c("specificity", "sensitivity"),
best.method=c("youden", "closest.topleft"), best.weights=c(1, 0.5),
conf.level=0.95, boot.n=2000,
boot.stratified=TRUE,
progress=getOption("pROCProgress")$name, ...)
Default S3 method:
ci.coords(response, predictor, ...)

Arguments

roc, smooth.roc

a “roc” object from the roc function, or a “smooth.roc” object from the smooth.roc
function.

ci.coords 21

response, predictor

arguments for the roc function.

formula, data a formula (and possibly a data object) of type response~predictor for the roc
function.

x, input, ret, best.method, best.weights

Arguments passed to coords. See there for more details. The only difference is
on the x argument which cannot be “all” or “local maximas”.

conf.level the width of the confidence interval as [0,1], never in percent. Default: 0.95,
resulting in a 95% CI.

boot.n the number of bootstrap replicates. Default: 2000.

boot.stratified

should the bootstrap be stratified (default, same number of cases/controls in each
replicate than in the original sample) or not.

progress the name of progress bar to display. Typically “none”, “win”, “tk” or “text” (see
the name argument to create_progress_bar for more information), but a list
as returned by create_progress_bar is also accepted. See also the “Progress
bars” section of this package’s documentation.

... further arguments passed to or from other methods, especially arguments for roc
and ci.coords.roc when calling ci.coords.default or ci.coords.formula.
Arguments for txtProgressBar (only char and style) if applicable.

Details

ci.coords.formula and ci.coords.default are convenience methods that build the ROC curve
(with the roc function) before calling ci.coords.roc. You can pass them arguments for both roc
and ci.coords.roc. Simply use ci.coords that will dispatch to the correct method.

This function creates boot.n bootstrap replicate of the ROC curve, and evaluates the coordinates
specified by the x, input, ret, best.method and best.weights arguments. Then it computes the
confidence interval as the percentiles given by conf.level.

For more details about the bootstrap, see the Bootstrap section in this package’s documentation.

Value

A matrix of class “ci.coords”, “ci” and “matrix” (in this order), with the confidence intervals of the
CI. The matrix has 3 columns (lower bound, median and upper bound) and as many rows as x * ret
were requested. Rows are sorted by x and then by ret and named as “input x: return”.

Additionally, the list has the following attributes:

conf.level the width of the CI, in fraction.

boot.n the number of bootstrap replicates.

boot.stratified

whether or not the bootstrapping was stratified.

roc the object of class “roc” that was used to compute the CI.

22 ci.coords

Warnings

If boot.stratified=FALSE and the sample has a large imbalance between cases and controls, it
could happen that one or more of the replicates contains no case or control observation, producing
a NA area. The warning “NA value(s) produced during bootstrap were ignored.” will be issued and
the observation will be ignored. If you have a large imbalance in your sample, it could be safer to
keep boot.stratified=TRUE.

References

James Carpenter and John Bithell (2000) “Bootstrap condence intervals: when, which, what? A
practical guide for medical statisticians”. Statistics in Medicine 19, 1141–1164. DOI: 10.1002/(SICI)1097-
0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F.

Tom Fawcett (2006) “An introduction to ROC analysis”. Pattern Recognition Letters 27, 861–874.
DOI: 10.1016/j.patrec.2005.10.010.

Hadley Wickham (2011) “The Split-Apply-Combine Strategy for Data Analysis”. Journal of Sta-
tistical Software, 40, 1–29. URL: www.jstatsoft.org/v40/i01.

See Also

roc, coords, ci

CRAN package plyr, employed in this function.

Examples

data(aSAH)

Not run:
Syntax (response, predictor):
ci.coords(aSAH$outcome, aSAH$s100b, x="best", input = "threshold",

ret=c("specificity", "ppv", "tp"))

With a roc object:
rocobj <- roc(aSAH$outcome, aSAH$s100b)
ci.coords(rocobj, x=0.9, input = "sensitivity", ret="specificity")
ci.coords(rocobj, x=0.9, input = "sensitivity", ret=c("specificity", "ppv", "tp"))
ci.coords(rocobj, x=c(0.1, 0.5, 0.9), input = "sensitivity", ret="specificity")
ci.coords(rocobj, x=c(0.1, 0.5, 0.9), input = "sensitivity", ret=c("specificity", "ppv", "tp"))

With a smoothed roc:
rocobj <- roc(aSAH$outcome, aSAH$s100b)
ci.coords(smooth(rocobj), x=0.9, input = "sensitivity", ret=c("specificity", "ppv", "tp"))

Return everything we can:
rets <- c("threshold", "specificity", "sensitivity", "accuracy", "tn", "tp", "fn", "fp", "npv",

"ppv", "1-specificity", "1-sensitivity", "1-accuracy", "1-npv", "1-ppv")
ci.coords(rocobj, x="best", input = "threshold", ret=rets)

End(Not run)

http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://www.jstatsoft.org/v40/i01

ci.se 23

ci.se Compute the confidence interval of sensitivities at given specificities

Description

This function computes the confidence interval (CI) of the sensitivity at the given specificity points.
By default, the 95% CI are computed with 2000 stratified bootstrap replicates.

Usage

ci.se(...)
S3 method for class 'roc'
ci.se(roc, specificities = seq(0, 1, .1) * ifelse(roc$percent,
100, 1), conf.level=0.95, boot.n=2000, boot.stratified=TRUE,
progress=getOption("pROCProgress")$name, parallel=FALSE, ...)
S3 method for class 'smooth.roc'
ci.se(smooth.roc, specificities = seq(0, 1, .1) *
ifelse(smooth.roc$percent, 100, 1), conf.level=0.95, boot.n=2000,
boot.stratified=TRUE, progress=getOption("pROCProgress")$name,
parallel=FALSE, ...)
S3 method for class 'formula'
ci.se(formula, data, ...)
Default S3 method:
ci.se(response, predictor, ...)

Arguments

roc, smooth.roc

a “roc” object from the roc function, or a “smooth.roc” object from the smooth.roc
function.

response, predictor

arguments for the roc function.

formula, data a formula (and possibly a data object) of type response~predictor for the roc
function.

specificities on which specificities to evaluate the CI.

conf.level the width of the confidence interval as [0,1], never in percent. Default: 0.95,
resulting in a 95% CI.

boot.n the number of bootstrap replicates. Default: 2000.
boot.stratified

should the bootstrap be stratified (default, same number of cases/controls in each
replicate than in the original sample) or not.

progress the name of progress bar to display. Typically “none”, “win”, “tk” or “text” (see
the name argument to create_progress_bar for more information), but a list
as returned by create_progress_bar is also accepted. See also the “Progress
bars” section of this package’s documentation.

24 ci.se

parallel if TRUE, the bootstrap is processed in parallel, using parallel backend provided
by plyr (foreach).

... further arguments passed to or from other methods, especially arguments for roc
and ci.se.roc when calling ci.se.default or ci.se.formula. Arguments
for txtProgressBar (only char and style) if applicable.

Details

ci.se.formula and ci.se.default are convenience methods that build the ROC curve (with the
roc function) before calling ci.se.roc. You can pass them arguments for both roc and ci.se.roc.
Simply use ci.se that will dispatch to the correct method.

The ci.se.roc function creates boot.n bootstrap replicate of the ROC curve, and evaluates the
sensitivity at specificities given by the specificities argument. Then it computes the confidence
interval as the percentiles given by conf.level.

For more details about the bootstrap, see the Bootstrap section in this package’s documentation.

For smoothed ROC curves, smoothing is performed again at each bootstrap replicate with the pa-
rameters originally provided. If a density smoothing was performed with user-provided density.cases
or density.controls the bootstrap cannot be performed and an error is issued.

Value

A matrix of class “ci.se”, “ci” and “matrix” (in this order) containing the given sensitivities. Row
(names) are the specificities, the first column the lower bound, the 2nd column the median and the
3rd column the upper bound.

Additionally, the list has the following attributes:

conf.level the width of the CI, in fraction.

boot.n the number of bootstrap replicates.
boot.stratified

whether or not the bootstrapping was stratified.

specificities the specificities as given in argument.

roc the object of class “roc” that was used to compute the CI.

Warnings

If boot.stratified=FALSE and the sample has a large imbalance between cases and controls, it
could happen that one or more of the replicates contains no case or control observation, or that there
are not enough points for smoothing, producing a NA area. The warning “NA value(s) produced
during bootstrap were ignored.” will be issued and the observation will be ignored. If you have a
large imbalance in your sample, it could be safer to keep boot.stratified=TRUE.

Errors

If density.cases and density.controls were provided for smoothing, the error “Cannot com-
pute the statistic on ROC curves smoothed with density.controls and density.cases.” is issued.

ci.se 25

References

James Carpenter and John Bithell (2000) “Bootstrap condence intervals: when, which, what? A
practical guide for medical statisticians”. Statistics in Medicine 19, 1141–1164. DOI: 10.1002/(SICI)1097-
0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F.

Tom Fawcett (2006) “An introduction to ROC analysis”. Pattern Recognition Letters 27, 861–874.
DOI: 10.1016/j.patrec.2005.10.010.

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for
R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-
2105-12-77.

Hadley Wickham (2011) “The Split-Apply-Combine Strategy for Data Analysis”. Journal of Sta-
tistical Software, 40, 1–29. URL: www.jstatsoft.org/v40/i01.

See Also

roc, ci, ci.sp, plot.ci

CRAN package plyr, employed in this function.

Examples

data(aSAH)

Not run:
Syntax (response, predictor):
ci.se(aSAH$outcome, aSAH$s100b)

With a roc object and less bootstrap:
rocobj <- roc(aSAH$outcome, aSAH$s100b)
ci.se(rocobj, boot.n=100)

Customized bootstrap and specific specificities:
ci.se(rocobj, c(.95, .9, .85), boot.n=500, conf.level=0.9, stratified=FALSE)

End(Not run)

Alternatively, you can get the CI directly from roc():
rocobj <- roc(aSAH$outcome,

aSAH$s100b, ci=TRUE, of="se", boot.n=100)
rocobj$ci

Plotting the CI
plot(rocobj)
plot(rocobj$ci)

Not run:
On a smoothed ROC, the CI is re-computed automatically
smooth(rocobj)
Or you can compute a new one:
ci.se(smooth(rocobj, method="density", reuse.ci=FALSE), boot.n=100)

End(Not run)

http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77
http://www.jstatsoft.org/v40/i01

26 ci.sp

ci.sp Compute the confidence interval of specificities at given sensitivities

Description

This function computes the confidence interval (CI) of the specificity at the given sensitivity points.
By default, the 95% CI are computed with 2000 stratified bootstrap replicates.

Usage

ci.sp(...)
S3 method for class 'roc'
ci.sp(roc, sensitivities = seq(0, 1, .1) * ifelse(roc$percent,
100, 1), conf.level=0.95, boot.n=2000, boot.stratified=TRUE,
progress=getOption("pROCProgress")$name, parallel=FALSE, ...)
S3 method for class 'smooth.roc'
ci.sp(smooth.roc, sensitivities = seq(0, 1, .1) *
ifelse(smooth.roc$percent, 100, 1), conf.level=0.95, boot.n=2000,
boot.stratified=TRUE, progress=getOption("pROCProgress")$name, parallel=FALSE, ...)
S3 method for class 'formula'
ci.sp(formula, data, ...)
Default S3 method:
ci.sp(response, predictor, ...)

Arguments

roc, smooth.roc

a “roc” object from the roc function, or a “smooth.roc” object from the smooth.roc
function.

response, predictor

arguments for the roc function.

formula, data a formula (and possibly a data object) of type response~predictor for the roc
function.

sensitivities on which sensitivities to evaluate the CI.

conf.level the width of the confidence interval as [0,1], never in percent. Default: 0.95,
resulting in a 95% CI.

boot.n the number of bootstrap replicates. Default: 2000.
boot.stratified

should the bootstrap be stratified (default, same number of cases/controls in each
replicate than in the original sample) or not.

progress the name of progress bar to display. Typically “none”, “win”, “tk” or “text” (see
the name argument to create_progress_bar for more information), but a list
as returned by create_progress_bar is also accepted. See also the “Progress
bars” section of this package’s documentation.

ci.sp 27

parallel if TRUE, the bootstrap is processed in parallel, using parallel backend provided
by plyr (foreach).

... further arguments passed to or from other methods, especially arguments for roc
and ci.sp.roc when calling ci.sp.default or ci.sp.formula. Arguments
for txtProgressBar (only char and style) if applicable.

Details

ci.sp.formula and ci.sp.default are convenience methods that build the ROC curve (with the
roc function) before calling ci.sp.roc. You can pass them arguments for both roc and ci.sp.roc.
Simply use ci.sp that will dispatch to the correct method.

The ci.sp.roc function creates boot.n bootstrap replicate of the ROC curve, and evaluates the
specificity at sensitivities given by the sensitivities argument. Then it computes the confidence
interval as the percentiles given by conf.level.

For more details about the bootstrap, see the Bootstrap section in this package’s documentation.

For smoothed ROC curves, smoothing is performed again at each bootstrap replicate with the pa-
rameters originally provided. If a density smoothing was performed with user-provided density.cases
or density.controls the bootstrap cannot be performed and an error is issued.

Value

A matrix of class “ci.sp”, “ci” and “matrix” (in this order) containing the given specificities. Row
(names) are the sensitivities, the first column the lower bound, the 2nd column the median and the
3rd column the upper bound.

Additionally, the list has the following attributes:

conf.level the width of the CI, in fraction.

boot.n the number of bootstrap replicates.
boot.stratified

whether or not the bootstrapping was stratified.

sensitivities the sensitivities as given in argument.

roc the object of class “roc” that was used to compute the CI.

Warnings

If boot.stratified=FALSE and the sample has a large imbalance between cases and controls, it
could happen that one or more of the replicates contains no case or control observation, or that there
are not enough points for smoothing, producing a NA area. The warning “NA value(s) produced
during bootstrap were ignored.” will be issued and the observation will be ignored. If you have a
large imbalance in your sample, it could be safer to keep boot.stratified=TRUE.

Errors

If density.cases and density.controls were provided for smoothing, the error “Cannot com-
pute the statistic on ROC curves smoothed with density.controls and density.cases.” is issued.

28 ci.sp

References

James Carpenter and John Bithell (2000) “Bootstrap condence intervals: when, which, what? A
practical guide for medical statisticians”. Statistics in Medicine 19, 1141–1164. DOI: 10.1002/(SICI)1097-
0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F.

Tom Fawcett (2006) “An introduction to ROC analysis”. Pattern Recognition Letters 27, 861–874.
DOI: 10.1016/j.patrec.2005.10.010.

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for
R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-
2105-12-77.

Hadley Wickham (2011) “The Split-Apply-Combine Strategy for Data Analysis”. Journal of Sta-
tistical Software, 40, 1–29. URL: www.jstatsoft.org/v40/i01.

See Also

roc, ci, ci.se, plot.ci

CRAN package plyr, employed in this function.

Examples

data(aSAH)

Not run:
Syntax (response, predictor):
ci.sp(aSAH$outcome, aSAH$s100b)

With a roc object:
rocobj <- roc(aSAH$outcome, aSAH$s100b)
ci.sp(rocobj)

Customized bootstrap and specific specificities:
ci.sp(rocobj, c(.95, .9, .85), boot.n=500, conf.level=0.9, stratified=FALSE)

End(Not run)

Alternatively, you can get the CI directly from roc():
rocobj <- roc(aSAH$outcome,

aSAH$s100b, ci=TRUE, of="sp", boot.n=100)
rocobj$ci

Plotting the CI
plot(rocobj)
plot(rocobj$ci)

Not run:
On a smoothed ROC, the CI is re-computed automatically
smooth(rocobj)
Or you can compute a new one:
ci.sp(smooth(rocobj, method="density", reuse.ci=FALSE), boot.n=100)

End(Not run)

http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77
http://www.jstatsoft.org/v40/i01

ci.thresholds 29

ci.thresholds Compute the confidence interval of thresholds

Description

This function computes the confidence interval (CI) of the sensitivity and specificity of the thresh-
olds given in argument. By default, the 95% CI are computed with 2000 stratified bootstrap repli-
cates.

Usage

ci.thresholds(...)
S3 method for class 'roc'
ci.thresholds(roc, conf.level=0.95, boot.n=2000,
boot.stratified=TRUE, thresholds = "local maximas",
progress=getOption("pROCProgress")$name, parallel=FALSE, ...)
S3 method for class 'formula'
ci.thresholds(formula, data, ...)
S3 method for class 'smooth.roc'
ci.thresholds(smooth.roc, ...)
Default S3 method:
ci.thresholds(response, predictor, ...)

Arguments

roc a “roc” object from the roc function.

smooth.roc not available for smoothed ROC curves, available only to catch the error and
provide a clear error message.

response, predictor

arguments for the roc function.

formula, data a formula (and possibly a data object) of type response~predictor for the roc
function.

conf.level the width of the confidence interval as [0,1], never in percent. Default: 0.95,
resulting in a 95% CI.

boot.n the number of bootstrap replicates. Default: 2000.
boot.stratified

should the bootstrap be stratified (default, same number of cases/controls in each
replicate than in the original sample) or not.

thresholds on which thresholds to evaluate the CI. Either the numeric values of the thresh-
olds, a logical vector (as index of roc$thresholds) or a character “all”, “local
maximas” or “best”.

progress the name of progress bar to display. Typically “none”, “win”, “tk” or “text” (see
the name argument to create_progress_bar for more information), but a list
as returned by create_progress_bar is also accepted. See also the “Progress
bars” section of this package’s documentation.

30 ci.thresholds

parallel if TRUE, the bootstrap is processed in parallel, using parallel backend provided
by plyr (foreach).

... further arguments passed to or from other methods, especially arguments for roc
and ci.thresholds.roc when calling ci.thresholds.default or ci.thresholds.formula.
Arguments for txtProgressBar (only char and style) if applicable.

Details

ci.thresholds.formula and ci.thresholds.default are convenience methods that build the
ROC curve (with the roc function) before calling ci.thresholds.roc. You can pass them argu-
ments for both roc and ci.thresholds.roc. Simply use ci.thresholds that will dispatch to the
correct method.

This function creates boot.n bootstrap replicate of the ROC curve, and evaluates the sensitivity
and specificity at thresholds given by the thresholds argument. Then it computes the confidence
interval as the percentiles given by conf.level.

For more details about the bootstrap, see the Bootstrap section in this package’s documentation.

Value

A list of length 2 and class “ci.thresholds”, “ci” and “list” (in this order), with the confidence
intervals of the CI and the following items:

specificity a matrix of CI for the specificity. Row (names) are the thresholds, the first
column the lower bound, the 2nd column the median and the 3rd column the
upper bound.

sensitivity same than specificity.

Additionally, the list has the following attributes:

conf.level the width of the CI, in fraction.

boot.n the number of bootstrap replicates.

boot.stratified

whether or not the bootstrapping was stratified.

thresholds the thresholds, as given in argument.

roc the object of class “roc” that was used to compute the CI.

Warnings

If boot.stratified=FALSE and the sample has a large imbalance between cases and controls, it
could happen that one or more of the replicates contains no case or control observation, producing
a NA area. The warning “NA value(s) produced during bootstrap were ignored.” will be issued and
the observation will be ignored. If you have a large imbalance in your sample, it could be safer to
keep boot.stratified=TRUE.

ci.thresholds 31

References

James Carpenter and John Bithell (2000) “Bootstrap condence intervals: when, which, what? A
practical guide for medical statisticians”. Statistics in Medicine 19, 1141–1164. DOI: 10.1002/(SICI)1097-
0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F.

Tom Fawcett (2006) “An introduction to ROC analysis”. Pattern Recognition Letters 27, 861–874.
DOI: 10.1016/j.patrec.2005.10.010.

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for
R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-
2105-12-77.

Hadley Wickham (2011) “The Split-Apply-Combine Strategy for Data Analysis”. Journal of Sta-
tistical Software, 40, 1–29. URL: www.jstatsoft.org/v40/i01.

See Also

roc, ci

CRAN package plyr, employed in this function.

Examples

data(aSAH)

Not run:
Syntax (response, predictor):
ci.thresholds(aSAH$outcome, aSAH$s100b)

With a roc object:
rocobj <- roc(aSAH$outcome, aSAH$s100b)
ci.thresholds(rocobj)

Customized bootstrap and specific thresholds:
ci.thresholds(aSAH$outcome, aSAH$s100b,

boot.n=500, conf.level=0.9, stratified=FALSE,
thresholds=c(0.5, 1, 2))

End(Not run)

Alternatively, you can get the CI directly from roc():
rocobj <- roc(aSAH$outcome,

aSAH$s100b, ci=TRUE, of="thresholds")
rocobj$ci

Plotting the CI
plot(rocobj)
plot(rocobj$ci)

http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77
http://www.jstatsoft.org/v40/i01

32 coords

coords Coordinates of a ROC curve

Description

This function returns the coordinates of the ROC curve at the specified point.

Usage

coords(...)
S3 method for class 'roc'
coords(roc, x, input=c("threshold", "specificity",
"sensitivity"), ret=c("threshold", "specificity", "sensitivity"),
as.list=FALSE, drop=TRUE, best.method=c("youden", "closest.topleft"),
best.weights=c(1, 0.5), ...)
S3 method for class 'smooth.roc'
coords(smooth.roc, x, input=c("specificity",
"sensitivity"), ret=c("specificity", "sensitivity"), as.list=FALSE,
drop=TRUE, best.method=c("youden", "closest.topleft"),
best.weights=c(1, 0.5), ...)

Arguments

roc, smooth.roc

a “roc” object from the roc function, or a “smooth.roc” object from the smooth.roc
function.

x the coordinates to look for. Numeric (if so, their meaning is defined by the input
argument) or one of “all” (all the points of the ROC curve), “local maximas”
(the local maximas of the ROC curve) or “best” (the point with the best sum of
sensitivity and specificity).

input If x is numeric, the kind of input coordinate (x). One of “threshold”, “speci-
ficity” or “sensitivity”. Can be shortenend (for example to “thr”, “sens” and
“spec”, or even to “t”, “se” and “sp”). Note that “threshold” is not allowed in
coords.smooth.roc, and that the argument is ignored when x is a character.

ret The coordinates to return. One or more of “threshold”, “specificity”, “sensitiv-
ity”, “accuracy”, “tn” (true negative count), “tp” (true positive count), “fn” (false
negativge count), “fp” (false positive count), “npv” (negative predictive value),
“ppv” (positive predictive value). “1-specificity”, “1-sensitivity”, “1-accuracy”,
“1-npv” and “1-ppv” are recognized as well, and must be used verbatim in ROC
curves with percent=TRUE (for instance “100-ppv” is never accepted). Values
can be shortenend (for example to “thr”, “sens” and “spec”, or even to “se”,
“sp” or “1-np”). Note that “threshold” is not allowed in coords.smooth.roc.
In addition, “npe” is replaced by “1-npv” and “ppe” by “1-ppv” (but they cannot
be shortened).

as.list If the returned object must be a list. If FALSE (default), a named numeric vector
is returned.

coords 33

drop If TRUE the result is coerced to the lowest possible dimension, as per Extract.
With FALSE if x is of length 1, the object returned will have the same format
than if x was of length > 1.

best.method if x="best", the method to determine the best threshold. See details in the ‘Best
thresholds’ section.

best.weights if x="best", the weights to determine the best threshold. See details in the ‘Best
thresholds’ section.

... further arguments passed to or from other methods. Ignored.

Details

This function takes a “roc” or “smooth.roc” object as first argument, on which the coordinates will
be determined. The coordinates are defined by the x and input arguments. “threshold” coordinates
cannot be determined in a smoothed ROC.

If input="threshold", the coordinates for the threshold are reported, even if the exact threshold
do not define the ROC curve. The following convenience characters are allowed: “all”, “local max-
imas” and “best”. They will return all the thresholds, only the thresholds defining local maximas
(upper angles of the ROC curve), or only the threshold(s) corresponding to the best sum of sensitiv-
ity + specificity respectively. Note that “best” can return more than one threshold. If x is a character,
the coordinates are limited to the thresholds within the partial AUC if it has been defined, and not
necessarily to the whole curve.

For input="specificity" and input="sensitivity", the function checks if the specificity or
sensitivity is one of the points of the ROC curve (in roc$sensitivities or roc$specificities).
More than one point may match (in step curves), then only the upper-left-most point coordinates
are returned. Otherwise, the specificity and specificity of the point is interpolated and NA is returned
as threshold.

The coords function in this package is a generic, but it might be superseded by functions in other
packages such as colorspace or spatstat if they are loaded after pROC. In this case, call the
coords.roc or coords.smooth.roc functions directly.

Value

Depending on the length of x and as.list argument.

length(x) == 1 length(x) > 1 or drop == FALSE
as.list=TRUE a list of the length of, in the order of, and named after, ret. a list of the length of, and named after, x. Each element of this list is a list of the length of, in the order of, and named after, ret.
as.list=FALSE a numeric vector of the length of, in the order of, and named after, ret. a numeric matrix with one row for each ret and one column for each x

In all cases if input="specificity" or input="sensitivity" and interpolation was required,
threshold is returned as NA.

Note that if giving a character as x (“all”, “local maximas” or “best”), you cannot predict the di-
mension of the return value unless drop=FALSE. Even “best” may return more than one value (for
example if the ROC curve is below the identity line, both extreme points).

coords may also return NULL when there a partial area is defined but no point of the ROC curve
falls within the region.

34 coords

Best thresholds

If x="best", the best.method argument controls how the optimal threshold is determined.

“youden” Youden’s J statistic (Youden, 1950) is employed. The optimal cut-off is the threshold
that maximizes the distance to the identity (diagonal) line. Can be shortened to “y”.
The optimality criterion is:

max(sensitivities+ specificities)

“closest.topleft” The optimal threshold is the point closest to the top-left part of the plot with
perfect sensitivity or specificity. Can be shortened to “c” or “t”.
The optimality criterion is:

min((1− sensitivities)2 + (1− specificities)2)

In addition, weights can be supplied if false positive and false negative predictions are not equiva-
lent: a numeric vector of length 2 to the best.weights argument. The indices define

1. the cost of of a false negative classification

2. the prevalence, or the proportion of cases in the total population (ncases

ncontrols+ncases
).

The optimality criteria are modified as proposed by Perkins and Schisterman:

“youden”

max(sensitivities+ r ∗ specificities)

“closest.topleft”

min((1− sensitivities)2 + r ∗ (1− specificities)2)

with

r =
1− prevalence
cost ∗ prevalence

By default, prevalence is 0.5 and cost is 1 so that no weight is applied in effect.

Note that several thresholds might be equally optimal.

References

Neil J. Perkins, Enrique F. Schisterman (2006) “The Inconsistency of "Optimal" Cutpoints Obtained
using Two Criteria based on the Receiver Operating Characteristic Curve”. American Journal of
Epidemiology 163(7), 670–675. DOI: 10.1093/aje/kwj063.

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for
R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-
2105-12-77.

W. J. Youden (1950) “Index for rating diagnostic tests”. Cancer, 3, 32–35. DOI: 10.1002/1097-
0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3.

http://dx.doi.org/10.1093/aje/kwj063
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
http://dx.doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3

coords 35

See Also

roc, ci.coords

Examples

data(aSAH)

Print a roc object:
rocobj <- roc(aSAH$outcome, aSAH$s100b)

coords(rocobj, 0.55)
coords(rocobj, 0.9, "specificity", as.list=TRUE)
coords(rocobj, 0.5, "se", ret="se")
fully qualified but identical:
coords(roc=rocobj, x=0.5, input="sensitivity", ret="sensitivity")

Compare with drop=FALSE
coords(rocobj, 0.55, drop=FALSE)
coords(rocobj, 0.9, "specificity", as.list=TRUE, drop=FALSE)

Same in percent
rocobj <- roc(aSAH$outcome, aSAH$s100b, percent=TRUE)

coords(rocobj, 0.55)
coords(rocobj, 90, "specificity", as.list=TRUE)
coords(rocobj, x=50, input="sensitivity", ret=c("sen", "spec"))

And with a smoothed ROC curve
coords(smooth(rocobj), 90, "specificity")
coords(smooth(rocobj), 90, "specificity", drop=FALSE)
coords(smooth(rocobj), 90, "specificity", as.list=TRUE)
coords(smooth(rocobj), 90, "specificity", as.list=TRUE, drop=FALSE)

Get the sensitivities for all thresholds
sensitivities <- coords(rocobj, rocobj$thresholds, "thr", "se")
This is equivalent to taking sensitivities from rocobj directly
stopifnot(all.equal(as.vector(rocobj$sensitivities), as.vector(sensitivities)))
You could also write:
sensitivities <- coords(rocobj, "all", ret="se")
stopifnot(all.equal(as.vector(rocobj$sensitivities), as.vector(sensitivities)))

Get the best threshold
coords(rocobj, "b", ret="t")

Get the best threshold according to different methods
rocobj <- roc(aSAH$outcome, aSAH$ndka, percent=TRUE)
coords(rocobj, "b", ret="t", best.method="youden") # default
coords(rocobj, "b", ret="t", best.method="closest.topleft")
and with different weights
coords(rocobj, "b", ret="t", best.method="youden", best.weights=c(50, 0.2))
coords(rocobj, "b", ret="t", best.method="closest.topleft", best.weights=c(5, 0.2))
and plot them

36 cov.roc

plot(rocobj, print.thres="best", print.thres.best.method="youden")
plot(rocobj, print.thres="best", print.thres.best.method="closest.topleft")
plot(rocobj, print.thres="best", print.thres.best.method="youden",

print.thres.best.weights=c(50, 0.2))
plot(rocobj, print.thres="best", print.thres.best.method="closest.topleft",

print.thres.best.weights=c(5, 0.2))

Return more values:
coords(rocobj, "best", ret=c("threshold", "specificity", "sensitivity", "accuracy",

"tn", "tp", "fn", "fp", "npv", "ppv", "1-specificity",
"1-sensitivity", "1-accuracy", "1-npv", "1-ppv"))

coords(smooth(rocobj), "best", ret=c("threshold", "specificity", "sensitivity", "accuracy",
"tn", "tp", "fn", "fp", "npv", "ppv", "1-specificity",
"1-sensitivity", "1-accuracy", "1-npv", "1-ppv"))

coords(smooth(rocobj), 0.5, ret=c("threshold", "specificity", "sensitivity", "accuracy",
"tn", "tp", "fn", "fp", "npv", "ppv", "1-specificity",
"1-sensitivity", "1-accuracy", "1-npv", "1-ppv"))

cov.roc Covariance of two paired ROC curves

Description

This function computes the covariance between the AUC of two correlated (or paired) ROC curves.

Usage

cov(...)
Default S3 method:
cov(...)
S3 method for class 'auc'
cov(roc1, roc2, ...)
S3 method for class 'smooth.roc'
cov(roc1, roc2, ...)
S3 method for class 'roc'
cov(roc1, roc2, method=c("delong", "bootstrap", "obuchowski"),
reuse.auc=TRUE, boot.n=2000, boot.stratified=TRUE, boot.return=FALSE,
progress=getOption("pROCProgress")$name, parallel=FALSE, ...)

Arguments

roc1, roc2 the two ROC curves on which to compute the covariance. Either “roc”, “auc” or
“smooth.roc” objects (types can be mixed as long as the original ROC curve are
paired).

method the method to use, either “delong” or “bootstrap”. The first letter is sufficient. If
omitted, the appropriate method is selected as explained in details.

reuse.auc if TRUE (default) and the “roc” objects contain an “auc” field, re-use these spec-
ifications for the test. See details.

cov.roc 37

boot.n for method="bootstrap" only: the number of bootstrap replicates or permuta-
tions. Default: 2000 .

boot.stratified

for method="bootstrap" only: should the bootstrap be stratified (same number
of cases/controls in each replicate than in the original sample) or not. Default:
TRUE .

boot.return if TRUE and method="bootstrap", also return the bootstrapped values. See
the “Value” section for more details.

progress the name of progress bar to display. Typically “none”, “win”, “tk” or “text” (see
the name argument to create_progress_bar for more information), but a list
as returned by create_progress_bar is also accepted. See also the “Progress
bars” section of this package’s documentation.

parallel if TRUE, the bootstrap is processed in parallel, using parallel backend provided
by plyr (foreach).

... further arguments passed to or from other methods, especially arguments for
cov.roc when calling cov, cov.auc or cov.smooth.roc. Arguments for auc (if
reuse.auc=FALSE) and txtProgressBar (only char and style) if applicable.

Details

This function computes the covariance between the AUC of two correlated (or paired, according to
the detection of are.paired) ROC curves. It is typically called with the two roc objects of interest.
Two methods are available: “delong” and “bootstrap” (see “Computational details” section below).

The default is to use “delong” method except with partial AUC and smoothed curves where “boot-
strap” is employed. Using “delong” for partial AUC and smoothed ROCs is not supported (a warn-
ing is produced and “bootstrap” is employed instead).

For smoothed ROC curves, smoothing is performed again at each bootstrap replicate with the pa-
rameters originally provided. If a density smoothing was performed with user-provided density.cases
or density.controls the bootstrap cannot be performed and an error is issued.

cov.default forces the usage of the cov function in the stats package, so that other code relying
on cov should continue to function normally.

Value

The numeric value of the covariance.

If boot.return=TRUE and method="bootstrap", an attribute resampled.values is set with the
resampled (bootstrapped) values. It contains a matrix with the columns representing the two ROC
curves, and the rows the boot.n bootstrap replicates.

AUC specification

To compute the covariance of the AUC of the ROC curves, cov needs a specification of the AUC.
The specification is defined by:

1. the “auc” field in the “roc” objects if reuse.auc is set to TRUE (default)

38 cov.roc

2. passing the specification to auc with . . . (arguments partial.auc, partial.auc.correct
and partial.auc.focus). In this case, you must ensure either that the roc object do not
contain an auc field (if you called roc with auc=FALSE), or set reuse.auc=FALSE.

If reuse.auc=FALSE the auc function will always be called with ... to determine the specification,
even if the “roc” objects do contain an auc field.

As well if the “roc” objects do not contain an auc field, the auc function will always be called with
... to determine the specification.

Warning: if the roc object passed to roc.test contains an auc field and reuse.auc=TRUE, auc is not
called and arguments such as partial.auc are silently ignored.

Computation details

With method="bootstrap", the processing is done as follow:

1. boot.n bootstrap replicates are drawn from the data. If boot.stratified is TRUE , each
replicate contains exactly the same number of controls and cases than the original sample,
otherwise if FALSE the numbers can vary.

2. for each bootstrap replicate, the AUC of the two ROC curves are computed and stored.

3. the variance (as per var.roc) of the resampled AUCs and their covariance are assessed in a
single bootstrap pass.

4. The following formula is used to compute the final covariance: V ar[AUC1]+V ar[AUC2]−
2cov[AUC1, AUC2]

With method="delong", the processing is done as described in Hanley and Hajian-Tilaki (1997).

With method="obuchowski", the processing is done as described in Obuchowski and McClish
(1997), Table 1 and Equation 5, p. 1531. The computation of g for partial area under the ROC
curve is modified as:

expr1 ∗ (2 ∗ pi ∗ expr2)(−1) ∗ (−expr4)−A ∗B ∗ expr1 ∗ (2 ∗ pi ∗ expr23)(−1/2) ∗ expr3

.

Binormality assumption

The “obuchowski” method makes the assumption that the data is binormal. If the data shows a
deviation from this assumption, it might help to normalize the data first (that is, before calling roc),
for example with quantile normalization:

norm.x <- qnorm(rank(x)/(length(x)+1))
cov(roc(response, norm.x, ...), ...)

“delong” and “bootstrap” methods make no such assumption.

Errors

If density.cases and density.controls were provided for smoothing, the error “Cannot com-
pute the covariance on ROC curves smoothed with density.controls and density.cases.” is issued.

cov.roc 39

Warnings

If “auc” specifications are different in both roc objects, the warning “Different AUC specifications
in the ROC curves. Enforcing the inconsistency, but unexpected results may be produced.” is issued.
Unexpected results may be produced.

If one or both ROC curves are “smooth.roc” objects with different smoothing specifications, the
warning “Different smoothing parameters in the ROC curves. Enforcing the inconsistency, but
unexpected results may be produced.” is issued. This warning can be benign, especially if ROC
curves were generated with roc(..., smooth=TRUE) with different arguments to other functions
(such as plot), or if you really want to compare two ROC curves smoothed differently.

If method="delong" and the AUC specification specifies a partial AUC, the warning “Using De-
Long for partial AUC is not supported. Using bootstrap test instead.” is issued. The method
argument is ignored and “bootstrap” is used instead.

If method="delong" and the ROC curve is smoothed, the warning “Using DeLong for smoothed
ROCs is not supported. Using bootstrap instead.” is issued. The method argument is ignored and
“bootstrap” is used instead.

DeLong ignores the direction of the ROC curve so that if two ROC curves have a different direction,
the warning “"DeLong should not be applied to ROC curves with a different direction."” is printed.
However, the spurious computation is enforced.

If boot.stratified=FALSE and the sample has a large imbalance between cases and controls, it
could happen that one or more of the replicates contains no case or control observation, or that there
are not enough points for smoothing, producing a NA area. The warning “NA value(s) produced
during bootstrap were ignored.” will be issued and the observation will be ignored. If you have a
large imbalance in your sample, it could be safer to keep boot.stratified=TRUE.

When both ROC curves have an auc of 1 (or 100%), their covariance will always be null. This is
true for both “delong” and “bootstrap” and methods. This result is misleading, as the covariance is
of course not null. A warning will be displayed to inform of this condition, and of the misleading
output.

Messages

The covariance can only be computed on paired data. This assumption is enforced by are.paired.
If the ROC curves are not paired, the covariance is 0 and the message “ROC curves are unpaired.”
is printed. If your ROC curves are paired, make sure they fit are.paired criteria.

References

Elisabeth R. DeLong, David M. DeLong and Daniel L. Clarke-Pearson (1988) “Comparing the areas
under two or more correlated receiver operating characteristic curves: a nonparametric approach”.
Biometrics 44, 837–845.

James A. Hanley and Karim O. Hajian-Tilaki (1997) “Sampling variability of nonparametric esti-
mates of the areas under receiver operating characteristic curves: An update”. Academic Radiology
4, 49–58. DOI: 10.1016/S1076-6332(97)80161-4.

Nancy A. Obuchowski, Donna K. McClish (1997). “Sample size determination for diagnostic ac-
curary studies involving binormal ROC curve indices”. Statistics in Medicine, 16(13), 1529–1542.
DOI: (SICI)1097-0258(19970715)16:13<1529::AID-SIM565>3.0.CO;2-H.

http://dx.doi.org/10.1016/S1076-6332(97)80161-4
http://dx.doi.org/10.1002/(SICI)1097-0258(19970715)16:13<1529::AID-SIM565>3.0.CO;2-H

40 cov.roc

Hadley Wickham (2011) “The Split-Apply-Combine Strategy for Data Analysis”. Journal of Sta-
tistical Software, 40, 1–29. URL: www.jstatsoft.org/v40/i01.

See Also

roc, var.roc

CRAN package plyr, employed in this function.

Examples

data(aSAH)

Basic example with 2 roc objects
roc1 <- roc(aSAH$outcome, aSAH$s100b)
roc2 <- roc(aSAH$outcome, aSAH$wfns)
cov(roc1, roc2)

Not run:
The latter used Delong. To use bootstrap:
cov(roc1, roc2, method="bootstrap")
Decrease boot.n for a faster execution:
cov(roc1, roc2, method="bootstrap", boot.n=1000)

End(Not run)

To use Obuchowski:
cov(roc1, roc2, method="obuchowski")

Not run:
Comparison can be done on smoothed ROCs
Smoothing is re-done at each iteration, and execution is slow
cov(smooth(roc1), smooth(roc2))

End(Not run)
or from an AUC (no smoothing)
cov(auc(roc1), roc2)

Not run:
With bootstrap and return.values, one can compute the variances of the
ROC curves in one single bootstrap run:
cov.rocs <- cov(roc1, roc2, method="bootstrap", boot.return=TRUE)
var(roc1):
var(attr(cov.rocs, "resampled.values")[,1])
var(roc2):
var(attr(cov.rocs, "resampled.values")[,2])

End(Not run)

Not run:
Covariance of partial AUC:
roc3 <- roc(aSAH$outcome, aSAH$s100b, partial.auc=c(1, 0.8), partial.auc.focus="se")
roc4 <- roc(aSAH$outcome, aSAH$wfns, partial.auc=c(1, 0.8), partial.auc.focus="se")

http://www.jstatsoft.org/v40/i01

groupGeneric 41

cov(roc3, roc4)
This is strictly equivalent to:
cov(roc3, roc4, method="bootstrap")

Alternatively, we could re-use roc1 and roc2 to get the same result:
cov(roc1, roc2, reuse.auc=FALSE, partial.auc=c(1, 0.8), partial.auc.focus="se")

End(Not run)

Spurious use of DeLong's test with different direction:
roc5 <- roc(aSAH$outcome, aSAH$s100b, direction="<")
roc6 <- roc(aSAH$outcome, aSAH$s100b, direction=">")
cov(roc5, roc6, method="delong")

Test data from Hanley and Hajian-Tilaki, 1997
disease.present <- c("Yes", "No", "Yes", "No", "No", "Yes", "Yes", "No",

"No", "Yes", "No", "No", "Yes", "No", "No")
field.strength.1 <- c(1, 2, 5, 1, 1, 1, 2, 1, 2, 2, 1, 1, 5, 1, 1)
field.strength.2 <- c(1, 1, 5, 1, 1, 1, 4, 1, 2, 2, 1, 1, 5, 1, 1)
roc7 <- roc(disease.present, field.strength.1)
roc8 <- roc(disease.present, field.strength.2)
Assess the covariance:
cov(roc7, roc8)

Not run:
With bootstrap:
cov(roc7, roc8, method="bootstrap")

End(Not run)

groupGeneric pROC Group Generic Functions

Description

Redefine base groupGeneric functions to handle auc and ci objects properly on operations and
mathematical operations. Attributes are dropped so that the AUC/CI behaves as a numeric value/matrix,
respectively. In the case of AUC, all attributes are dropped, while in CI only the CI-specific at-
tributes are, keeping those necessary for the matrices.

Usage

Math(x, ...)
Ops(e1, e2)

Arguments

x, e1, e2 auc objects, or mixed numerics and auc objects.

... further arguments passed to other Math methods.

42 has.partial.auc

See Also

groupGeneric, auc

Examples

data(aSAH)

Create a roc object:
aucobj1 <- auc(roc(aSAH$outcome, aSAH$s100b))
aucobj2 <- auc(roc(aSAH$outcome, aSAH$wfns))

Math
sqrt(aucobj1)
round(aucobj2, digits=1)

Ops
aucobj1 * 2
2 * aucobj2
aucobj1 + aucobj2

With CI
ciaucobj <- ci(aucobj1)
ciaucobj * 2
sqrt(ciaucobj)

has.partial.auc Does the ROC curve have a partial AUC?

Description

This function determines if the ROC curve has a partial AUC.

Usage

has.partial.auc(roc)
S3 method for class 'auc'
has.partial.auc(roc)
S3 method for class 'smooth.roc'
has.partial.auc(roc)
S3 method for class 'roc'
has.partial.auc(roc)

Arguments

roc the ROC curve to check.

lines.roc 43

Value

TRUE if the AUC is a partial AUC, FALSE otherwise.

If the AUC is not defined (i. e. if roc was called with AUC=FALSE), returns NULL.

See Also

auc

Examples

data(aSAH)

Full AUC
roc1 <- roc(aSAH$outcome, aSAH$s100b)
has.partial.auc(roc1)
has.partial.auc(auc(roc1))
has.partial.auc(smooth(roc1))

Partial AUC
roc2 <- roc(aSAH$outcome, aSAH$s100b, partial.auc = c(1, 0.9))
has.partial.auc(roc2)
has.partial.auc(smooth(roc2))

No AUC
roc3 <- roc(aSAH$outcome, aSAH$s100b, auc = FALSE)
has.partial.auc(roc3)

lines.roc Add a ROC line to a ROC plot

Description

This convenience function adds a ROC line to a ROC curve.

Usage

S3 method for class 'roc'
lines(x, ...)
S3 method for class 'smooth.roc'
lines(x, ...)
S3 method for class 'roc'
lines.roc(x, lwd=2, ...)
S3 method for class 'formula'
lines.roc(x, data, ...)
Default S3 method:
lines.roc(x, predictor, ...)
S3 method for class 'smooth.roc'
lines.roc(x, ...)

44 multiclass.roc

Arguments

x a roc object from the roc function (for plot.roc.roc), a formula (for plot.roc.formula)
or a response vector (for plot.roc.default).

predictor, data

arguments for the roc function.

lwd line width (see par).

... graphical parameters for lines, and especially type (see plot.default) and
arguments for par such as col (color), lty (line type) or line characteristics
lend, ljoin and lmitre.

Value

This function returns a list of class “roc” invisibly. See roc for more details.

See Also

roc, plot.roc

Examples

data(aSAH)

rocobj <- plot.roc(aSAH$outcome, aSAH$s100b, type="n")
lines(rocobj, type="b", pch=21, col="blue", bg="grey")

Without using 'lines':
rocobj <- plot.roc(aSAH$outcome, aSAH$s100b, type="b", pch=21, col="blue", bg="grey")

multiclass.roc Multi-class AUC

Description

This function builds builds multiple ROC curve to compute the multi-class AUC as defined by Hand
and Till.

Usage

multiclass.roc(...)
S3 method for class 'formula'
multiclass.roc(formula, data, ...)
Default S3 method:
multiclass.roc(response, predictor,
levels=base::levels(as.factor(response)),
percent=FALSE, ...)

multiclass.roc 45

Arguments

response a factor, numeric or character vector of responses, typically encoded with 0
(controls) and 1 (cases), as in roc.

predictor a numeric vector, containing the value of each observation, as in roc.

formula a formula of the type response~predictor.

data a matrix or data.frame containing the variables in the formula. See model.frame
for more details.

levels the value of the response for controls and cases respectively. In contrast with
levels argument to roc, all the levels are used and combined to compute the
multiclass AUC.

percent if the sensitivities, specificities and AUC must be given in percent (TRUE) or in
fraction (FALSE, default).

... further arguments passed to roc.

Details

This function performs multiclass AUC as defined by Hand and Till (2001). A multiclass AUC is a
mean of auc and cannot be plotted.

This function has been much less tested than the rest of the package and is more subject to bugs.
Please report them if you find one. Confidence intervals and comparison tests are not implemented
yet.

Value

A list of class “multiclass.roc” with the following fields:

auc if called with auc=TRUE, a numeric of class “auc” as defined in auc. Note that
this is not the standard AUC but the multi-class AUC as defined by Hand and
Till.

ci if called with ci=TRUE, a numeric of class “ci” as defined in ci.

response the response vector as passed in argument. If NA values were removed, a na.action
attribute similar to na.omit stores the row numbers.

predictor the predictor vector as passed in argument. If NA values were removed, a na.action
attribute similar to na.omit stores the row numbers.

levels the levels of the response as defined in argument.

percent if the sensitivities, specificities and AUC are reported in percent, as defined in
argument.

call how the function was called. See match.call for more details.

Warnings

If response is an ordered factor and one of the levels specified in levels is missing, a warning is
issued and the level is ignored.

46 plot.ci

References

David J. Hand and Robert J. Till (2001). A Simple Generalisation of the Area Under the ROC
Curve for Multiple Class Classification Problems. Machine Learning 45(2), p. 171–186. DOI:
10.1023/A:1010920819831.

See Also

auc

Examples

data(aSAH)

Basic example
multiclass.roc(aSAH$gos6, aSAH$s100b)
Produces an innocuous warning because one level has no observation

Select only 3 of the aSAH$gos6 levels:
multiclass.roc(aSAH$gos6, aSAH$s100b, levels=c(3, 4, 5))

Give the result in percent
multiclass.roc(aSAH$gos6, aSAH$s100b, percent=TRUE)

plot.ci Plot confidence intervals

Description

This function adds confidence intervals to a ROC curve plot, either as bars or as a confidence shape.

Usage

S3 method for class 'ci.thresholds'
plot(x, length=.01*ifelse(attr(x,
"roc")$percent, 100, 1), col=par("fg"), ...)

S3 method for class 'ci.sp'
plot(x, type=c("bars", "shape"), length=.01*ifelse(attr(x,
"roc")$percent, 100, 1), col=ifelse(type=="bars", par("fg"),
"gainsboro"), no.roc=FALSE, ...)
S3 method for class 'ci.se'
plot(x, type=c("bars", "shape"), length=.01*ifelse(attr(x,
"roc")$percent, 100, 1), col=ifelse(type=="bars", par("fg"),
"gainsboro"), no.roc=FALSE, ...)

http://dx.doi.org/10.1023/A:1010920819831

plot.ci 47

Arguments

x a confidence interval object from the functions ci.thresholds, ci.se or ci.sp.

type type of plot, “bars” or “shape”. Can be shortened to “b” or “s”. “shape” is only
available for ci.se and ci.sp, not for ci.thresholds.

length the length (as plot coordinates) of the bar ticks. Only if type="bars".

no.roc if FALSE, the ROC line is re-added over the shape. Otherwise if TRUE, only the
shape is plotted. Ignored if type="bars"

col color of the bars or shape.

... further arguments for segments (if type="bars") or polygon (if type="shape").

Details

This function adds confidence intervals to a ROC curve plot, either as bars or as a confidence shape,
depending on the state of the type argument. The shape is plotted over the ROC curve, so that the
curve is re-plotted unless no.roc=TRUE.

Graphical functions are called with suppressWarnings.

Value

This function returns the confidence interval object invisibly.

Warnings

With type="shape", the warning “Low definition shape” is issued when the shape is defined by
less than 15 confidence intervals. In such a case, the shape is not well defined and the ROC curve
could pass outside the shape. To get a better shape, increase the number of intervals, for example
with:

plot(ci.sp(rocobj, sensitivities=seq(0, 1, .01)), type="shape")

References

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for
R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-
2105-12-77.

See Also

plot.roc, ci.thresholds, ci.sp, ci.se

Examples

data(aSAH)
Not run:
Start a ROC plot
rocobj <- plot.roc(aSAH$outcome, aSAH$s100b)
plot(rocobj)
Thresholds

http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77

48 plot.roc

ci.thresolds.obj <- ci.thresholds(rocobj)
plot(ci.thresolds.obj)
Specificities
plot(rocobj) # restart a new plot
ci.sp.obj <- ci.sp(rocobj, boot.n=500)
plot(ci.sp.obj)
Sensitivities
plot(rocobj) # restart a new plot
ci.se.obj <- ci(rocobj, of="se", boot.n=500)
plot(ci.se.obj)

Plotting a shape. We need more
ci.sp.obj <- ci.sp(rocobj, sensitivities=seq(0, 1, .01), boot.n=100)
plot(rocobj) # restart a new plot
plot(ci.sp.obj, type="shape", col="blue")

Direct syntax (response, predictor):
plot.roc(aSAH$outcome, aSAH$s100b,

ci=TRUE, of="thresholds")

End(Not run)

plot.roc Plot a ROC curve

Description

This function plots a ROC curve. It can accept many arguments to tweak the appearance of the plot.
Two syntaxes are possible: one object of class “roc”, or either two vectors (response, predictor) or
a formula (response~predictor) as in the roc function.

Usage

S3 method for class 'roc'
plot(x, ...)
S3 method for class 'smooth.roc'
plot(x, ...)
S3 method for class 'roc'
plot.roc(x, add=FALSE, reuse.auc=TRUE,
axes=TRUE, legacy.axes=FALSE,
Generic arguments for par:
xlim=if(x$percent){c(100, 0)} else{c(1, 0)},
ylim=if(x$percent){c(0, 100)} else{c(0, 1)},
xlab=ifelse(x$percent, ifelse(legacy.axes, "100 - Specificity (%)", "Specificity (%)"),

ifelse(legacy.axes, "1 - Specificity", "Specificity")),
ylab=ifelse(x$percent, "Sensitivity (%)", "Sensitivity"),
asp=1,
mar=c(4, 4, 2, 2)+.1,
mgp=c(2.5, 1, 0),

plot.roc 49

col, lty and lwd for the ROC line only
col=par("col"),
lty=par("lty"),
lwd=2,
type="l",
Identity line
identity=!add,
identity.col="darkgrey",
identity.lty=1,
identity.lwd=1,
Print the thresholds on the plot
print.thres=FALSE,
print.thres.pch=20,
print.thres.adj=c(-.05,1.25),
print.thres.col="black",
print.thres.pattern=ifelse(x$percent, "%.1f (%.1f%%, %.1f%%)", "%.3f (%.3f, %.3f)"),
print.thres.cex=par("cex"),
print.thres.pattern.cex=print.thres.cex,
print.thres.best.method=NULL,
print.thres.best.weights=c(1, 0.5),
Print the AUC on the plot
print.auc=FALSE,
print.auc.pattern=NULL,
print.auc.x=ifelse(x$percent, 50, .5),
print.auc.y=ifelse(x$percent, 50, .5),
print.auc.adj=c(0,1),
print.auc.col=col,
print.auc.cex=par("cex"),
Grid
grid=FALSE,
grid.v={if(is.logical(grid) && grid[1]==TRUE)

{seq(0, 1, 0.1) * ifelse(x$percent, 100, 1)}
else if(is.numeric(grid))
{seq(0, ifelse(x$percent, 100, 1), grid[1])} else {NULL}},

grid.h={if (length(grid) == 1) {grid.v}
else if (is.logical(grid) && grid[2]==TRUE)
{seq(0, 1, 0.1) * ifelse(x$percent, 100, 1)}

else if(is.numeric(grid))
{seq(0, ifelse(x$percent, 100, 1), grid[2])} else {NULL}},

grid.lty=3,
grid.lwd=1,
grid.col="#DDDDDD",
Polygon for the AUC
auc.polygon=FALSE,
auc.polygon.col="gainsboro",
auc.polygon.lty=par("lty"),
auc.polygon.density=NULL,
auc.polygon.angle=45,

50 plot.roc

auc.polygon.border=NULL,
Polygon for the maximal AUC possible
max.auc.polygon=FALSE,
max.auc.polygon.col="#EEEEEE",
max.auc.polygon.lty=par("lty"),
max.auc.polygon.density=NULL,
max.auc.polygon.angle=45,
max.auc.polygon.border=NULL,
Confidence interval
ci=!is.null(x$ci),
ci.type=c("bars", "shape", "no"),
ci.col=ifelse(ci.type=="bars", par("fg"), "gainsboro"),
...)
S3 method for class 'formula'
plot.roc(x, data, ...)
Default S3 method:
plot.roc(x, predictor, ...)
S3 method for class 'smooth.roc'
plot.roc(x, ...)

Arguments

x a roc object from the roc function (for plot.roc.roc), a formula (for plot.roc.formula)
or a response vector (for plot.roc.default).

predictor, data

arguments for the roc function.

add if TRUE, the ROC curve will be added to an existing plot. If FALSE (default),
a new plot will be created.

reuse.auc if TRUE (default) and the “roc” object contains an “auc” field, re-use these speci-
fications for the plot (specifically print.auc, auc.polygon and max.auc.polygon
arguments). See details.

axes a logical indicating if the plot axes must be drawn.

legacy.axes a logical indicating if the specificity axis (x axis) must be plotted as as decreasing
“specificity” (FALSE, the default) or increasing “1 - specificity” (TRUE) as in most
legacy software. This affects only the axis, not the plot coordinates.

xlim, ylim, xlab, ylab, asp, mar, mgp

Generic arguments for the plot. See plot and plot.window for more details. Only
used if add=FALSE.

col,lty, lwd color, line type and line width for the ROC curve. See par for more details.

type type of plotting as in plot.

identity logical: whether or not the identity line (no discrimination line) must be dis-
played. Default: only on new plots.

identity.col, identity.lty, identity.lwd

color, line type and line width for the identity line. Used only if identity=TRUE.
See par for more details.

plot.roc 51

print.thres Should a selected set of thresholds be displayed on the ROC curve? FALSE, NULL
or “no”: no threshold is displayed. TRUE or “best”: the threshold with the highest
sum sensitivity + specificity is plotted (this might be more than one threshold).
“all”: all the points of the ROC curve. “local maximas”: all the local maximas.
Numeric vector: direct definition of the thresholds to display. Note that on a
smoothed ROC curve, only “best” is supported.

print.thres.pch, print.thres.adj, print.thres.col, print.thres.cex

the plotting character (pch), text string adjustment (adj), color (col) and char-
acter expansion factor (cex) parameters for the printing of the thresholds. See
points and par for more details.

print.thres.pattern

the text pattern for the thresholds, as a sprintf format. Three numerics are passed
to sprintf: threshold, specificity, sensitivity.

print.thres.pattern.cex

the character expansion factor (cex) for the threshold text pattern. See par for
more details.

print.thres.best.method, print.thres.best.weights

if print.thres="best" or print.thres=TRUE, what method must be used to
determine which threshold is the best. See argument best.method and best.weights
to coords for more details.

print.auc boolean. Should the numeric value of AUC be printed on the plot?
print.auc.pattern

the text pattern for the AUC, as a sprintf format. If NULL, a reasonable value
is computed that takes partial AUC, CI and percent into account. If the CI of
the AUC was computed, three numerics are passed to sprintf: AUC, lower CI
bound, higher CI bound. Otherwise, only AUC is passed.

print.auc.x, print.auc.y

x and y position for the printing of the AUC.
print.auc.adj, print.auc.cex, print.auc.col

the text adjustment, character expansion factor and color for the printing of the
AUC. See par for more details.

grid boolean or numeric vector of length 1 or 2. Should a background grid be added
to the plot? Numeric: show a grid with the specified interval between each line;
Logical: show the grid or not. Length 1: same values are taken for horizontal and
vertical lines. Length 2: grid value for vertical (grid[1]) and horizontal (grid[2]).
Note that these values are used to compute grid.v and grid.h. Therefore if you
specify a grid.h and grid.v, it will be ignored.

grid.v, grid.h numeric. The x and y values at which a vertical or horizontal line (respectively)
must be drawn. NULL if no line must be added.

grid.lty, grid.lwd, grid.col

the line type (lty), line width (lwd) and color (col) of the lines of the grid. See
par for more details. Note that you can pass vectors of length 2, in which case it
specifies the vertical (1) and horizontal (2) lines.

auc.polygon boolean. Whether or not to display the area as a polygon.
auc.polygon.col, auc.polygon.lty, auc.polygon.density, auc.polygon.angle, auc.polygon.border

color (col), line type (lty), density, angle and border for the AUC polygon. See
polygon and par for more details.

52 plot.roc

max.auc.polygon

boolean. Whether or not to display the maximal possible area as a polygon.
max.auc.polygon.col, max.auc.polygon.lty, max.auc.polygon.density, max.auc.polygon.angle, max.auc.polygon.border

color (col), line type (lty), density, angle and border for the maximum AUC
polygon. See polygon and par for more details.

ci boolean. Should we plot the confidence intervals?
ci.type, ci.col

type and col arguments for plot.ci. The special value “no” disables the plot-
ting of confidence intervals.

... further arguments passed to or from other methods, especially arguments for roc
and plot.roc.roc when calling plot.roc.default or plot.roc.formula.
Note that the plot argument for roc is not allowed. Arguments for auc and
graphical functions plot, abline, polygon, points, text and plot.ci if ap-
plicable.

Details

This function is typically called from roc when plot=TRUE (not by default). plot.roc.formula
and plot.roc.default are convenience methods that build the ROC curve (with the roc function)
before calling plot.roc.roc. You can pass them arguments for both roc and plot.roc.roc.
Simply use plot.roc that will dispatch to the correct method.

The plotting is done in the following order:

1. A new plot is created if add=FALSE.

2. The grid is added if grid.v and grid.h are not NULL.

3. The maximal AUC polygon is added if max.auc.polygon=TRUE.

4. The CI shape is added if ci=TRUE, ci.type="shape" and x$ci isn’t a “ci.auc”.

5. The AUC polygon is added if auc.polygon=TRUE.

6. The identity line if identity=TRUE.

7. The actual ROC line is added.

8. The CI bars are added if ci=TRUE, ci.type="bars" and x$ci isn’t a “ci.auc”.

9. The selected thresholds are printed if print.thres is TRUE or numeric.

10. The AUC is printed if print.auc=TRUE.

Graphical functions are called with suppressWarnings.

Value

This function returns a list of class “roc” invisibly. See roc for more details.

AUC specification

For print.auc, auc.polygon and max.auc.polygon arguments, an AUC specification is required.
By default, the total AUC is plotted, but you may want a partial AUCs. The specification is defined
by:

plot.roc 53

1. the “auc” field in the “roc” object if reuse.auc is set to TRUE (default). It is naturally inherited
from any call to roc and fits most cases.

2. passing the specification to auc with . . . (arguments partial.auc, partial.auc.correct
and partial.auc.focus). In this case, you must ensure either that the roc object do not
contain an auc field (if you called roc with auc=FALSE), or set reuse.auc=FALSE.

If reuse.auc=FALSE the auc function will always be called with ... to determine the specification,
even if the “roc” object do contain an auc field.

As well if the “roc” object do not contain an auc field, the auc function will always be called with
... to determine the specification.

Warning: if the roc object passed to plot.roc contains an auc field and reuse.auc=TRUE, auc is not
called and arguments such as partial.auc are silently ignored.

References

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for
R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-
2105-12-77.

See Also

roc, auc, ci

Examples

data(aSAH)

Syntax (response, predictor):
plot.roc(aSAH$outcome, aSAH$s100b)

With a roc object:
rocobj <- roc(aSAH$outcome, aSAH$s100b)
identical:
plot(rocobj)
plot.roc(rocobj)

Add a smoothed ROC:
plot.roc(smooth(rocobj), add=TRUE, col="blue")
legend("bottomright", legend=c("Empirical", "Smoothed"),

col=c(par("fg"), "blue"), lwd=2)

With more options:
plot(rocobj, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2),

grid.col=c("green", "red"), max.auc.polygon=TRUE,
auc.polygon.col="blue", print.thres=TRUE)

To plot a different partial AUC, we need to ignore the existing value
with reuse.auc=FALSE:
plot(rocobj, print.auc=TRUE, auc.polygon=TRUE, partial.auc=c(1, 0.8),

partial.auc.focus="se", grid=c(0.1, 0.2), grid.col=c("green", "red"),
max.auc.polygon=TRUE, auc.polygon.col="blue", print.thres=TRUE,

http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77

54 power.roc.test

reuse.auc=FALSE)

Add a line to the previous plot:
plot.roc(aSAH$outcome, aSAH$wfns, add=TRUE)

Alternatively, you can get the plot directly from roc():
roc(aSAH$outcome, aSAH$s100b, plot=TRUE)

power.roc.test Sample size and power computation for ROC curves

Description

Computes sample size, power, significance level or minimum AUC for ROC curves.

Usage

power.roc.test(...)
One or Two ROC curves test with roc objects:
S3 method for class 'roc'
power.roc.test(roc1, roc2, sig.level = 0.05,
power = NULL, alternative = c("two.sided", "one.sided"),
reuse.auc=TRUE, method = c("delong", "bootstrap", "obuchowski"), ...)
One ROC curve with a given AUC:
S3 method for class 'numeric'
power.roc.test(auc = NULL, ncontrols = NULL,
ncases = NULL, sig.level = 0.05, power = NULL, kappa = 1,
alternative = c("two.sided", "one.sided"), ...)
Two ROC curves with the given parameters:
S3 method for class 'list'
power.roc.test(parslist, ncontrols = NULL,
ncases = NULL, sig.level = 0.05, power = NULL, kappa = 1,
alternative = c("two.sided", "one.sided"), ...)

Arguments

roc1, roc2 one or two “roc” object from the roc function.

auc expected AUC.

parslist a list of parameters for the two ROC curves test with Obuchowski variance
when no empirical ROC curve is known:

A1 binormal A parameter for ROC curve 1
B1 binormal B parameter for ROC curve 1
A2 binormal A parameter for ROC curve 2
B2 binormal B parameter for ROC curve 2
rn correlation between the variables in control patients
ra correlation between the variables in case patients

power.roc.test 55

delta the difference of AUC between the two ROC curves

For a partial AUC, the following additional parameters must be set:

FPR11 Upper bound of FPR (1 - specificity) of ROC curve 1
FPR12 Lower bound of FPR (1 - specificity) of ROC curve 1
FPR21 Upper bound of FPR (1 - specificity) of ROC curve 2
FPR22 Lower bound of FPR (1 - specificity) of ROC curve 2

ncontrols, ncases

number of controls and case observations available.

sig.level expected significance level (probability of type I error).

power expected power of the test (1 - probability of type II error).

kappa expected balance between control and case observations. Must be positive. Only
for sample size determination, that is to determine ncontrols and ncases.

alternative whether a one or two-sided test is performed.

reuse.auc if TRUE (default) and the “roc” objects contain an “auc” field, re-use these spec-
ifications for the test. See the AUC specification section for more details.

method the method to compute variance and covariance, either “delong”, “bootstrap” or
“obuchowski”. The first letter is sufficient. Only for Two ROC curves power
calculation. See var and cov documentations for more details.

... further arguments passed to or from other methods, especially auc (with reuse.auc=FALSE
or no AUC in the ROC curve), cov and var (especially arguments method,
boot.n and boot.stratified). Ignored (with a warning) with a parslist.

Value

An object of class power.htest (such as that given by power.t.test) with the supplied and com-
puted values.

One ROC curve power calculation

If one or no ROC curves are passed to power.roc.test, a one ROC curve power calculation is
performed. The function expects either power, sig.level or auc, or both ncontrols and ncases
to be missing, so that the parameter is determined from the others with the formula by Obuchowski
et al., 2004 (formulas 2 and 3, p. 1123).

For the sample size, ncases is computed directly from formulas 2 and 3 and ncontrols is deduced
with kappa. AUC is optimized by uniroot while sig.level and power are solved as quadratic
equations.

power.roc.test can also be passed a roc object from the roc function, but the empirical ROC
will not be used, only the number of patients and the AUC.

Two paired ROC curves power calculation

If two ROC curves are passed to power.roc.test, the function will compute either the required
sample size (if power is supplied), the significance level (if sig.level=NULL and power is supplied)
or the power of a test of a difference between to AUCs according to the formula by Obuchowski

56 power.roc.test

and McClish, 1997et al. (formulas 2 and 3, p. 1530–1531). The null hypothesis is that the AUC of
roc1 is the same than the AUC of roc2, with roc1 taken as the reference ROC curve.

For the sample size, ncases is computed directly from formula 2 and ncontrols is deduced from the
ratio observed in roc1 and roc2. sig.level and power are solved as quadratic equations.

The variance and covariance of the ROC curve are computed with the var and cov functions. By
default, DeLong method is used for full AUCs and the bootstrap for partial AUCs. It is possible to
force the use of Obuchowski’s variance by specifying method="obuchowski".

Alternatively when no empirical ROC curve is known, or if only one is available, a list can be
passed to power.roc.test, with the contents defined in the “Arguments” section. The variance
and covariance are computed from Table 1 and Equation 4 and 5 of Obuchowski and McClish
(1997), p. 1530–1531.

Power calculation for unpaired ROC curves is not implemented.

AUC specification

The comparison of the AUC of the ROC curves needs a specification of the AUC. The specification
is defined by:

1. the “auc” field in the “roc” objects if reuse.auc is set to TRUE (default)

2. passing the specification to auc with . . . (arguments partial.auc, partial.auc.correct
and partial.auc.focus). In this case, you must ensure either that the roc object do not
contain an auc field (if you called roc with auc=FALSE), or set reuse.auc=FALSE.

If reuse.auc=FALSE the auc function will always be called with ... to determine the specification,
even if the “roc” objects do contain an auc field.

As well if the “roc” objects do not contain an auc field, the auc function will always be called with
... to determine the specification.

Warning: if the roc object passed to roc.test contains an auc field and reuse.auc=TRUE, auc is not
called and arguments such as partial.auc are silently ignored.

Acknowledgements

The authors would like to thank Christophe Combescure and Anne-Sophie Jannot for their help
with the implementation of this section of the package.

References

Nancy A. Obuchowski, Donna K. McClish (1997). “Sample size determination for diagnostic accu-
rary studies involving binormal ROC curve indices”. Statistics in Medicine, 16, 1529–1542. DOI:
10.1002/(SICI)1097-0258(19970715)16:13<1529::AID-SIM565>3.0.CO;2-H.

Nancy A. Obuchowski, Micharl L. Lieber, Frank H. Wians Jr. (2004). “ROC Curves in Clinical
Chemistry: Uses, Misuses, and Possible Solutions”. Clinical Chemistry, 50, 1118–1125. DOI:
10.1373/clinchem.2004.031823.

See Also

roc, roc.test

http://dx.doi.org/10.1002/(SICI)1097-0258(19970715)16:13<1529::AID-SIM565>3.0.CO;2-H
http://dx.doi.org/10.1373/clinchem.2004.031823

power.roc.test 57

Examples

data(aSAH)

One ROC curve

Build a roc object:
rocobj <- roc(aSAH$outcome, aSAH$s100b)

Determine power of one ROC curve:
power.roc.test(rocobj)
Same as:
power.roc.test(ncases=41, ncontrols=72, auc=0.73, sig.level=0.05)
sig.level=0.05 is implicit and can be omitted:
power.roc.test(ncases=41, ncontrols=72, auc=0.73)

Determine ncases & ncontrols:
power.roc.test(auc=rocobj$auc, sig.level=0.05, power=0.95, kappa=1.7)
power.roc.test(auc=0.73, sig.level=0.05, power=0.95, kappa=1.7)

Determine sig.level:
power.roc.test(ncases=41, ncontrols=72, auc=0.73, power=0.95, sig.level=NULL)

Derermine detectable AUC:
power.roc.test(ncases=41, ncontrols=72, sig.level=0.05, power=0.95)

Two ROC curves

Full AUC
roc1 <- roc(aSAH$outcome, aSAH$ndka)
roc2 <- roc(aSAH$outcome, aSAH$wfns)

Sample size
With DeLong variance (default)
power.roc.test(roc1, roc2, power=0.9)
With Obuchowski variance
power.roc.test(roc1, roc2, power=0.9, method="obuchowski")

Power test
With DeLong variance (default)
power.roc.test(roc1, roc2)
With Obuchowski variance
power.roc.test(roc1, roc2, method="obuchowski")

Significance level
With DeLong variance (default)
power.roc.test(roc1, roc2, power=0.9, sig.level=NULL)
With Obuchowski variance
power.roc.test(roc1, roc2, power=0.9, sig.level=NULL, method="obuchowski")

Partial AUC
roc3 <- roc(aSAH$outcome, aSAH$ndka, partial.auc=c(1, 0.9))

58 print

roc4 <- roc(aSAH$outcome, aSAH$wfns, partial.auc=c(1, 0.9))

Sample size
With bootstrap variance (default)
Not run:
power.roc.test(roc3, roc4, power=0.9)

End(Not run)
With Obuchowski variance
power.roc.test(roc3, roc4, power=0.9, method="obuchowski")

Power test
With bootstrap variance (default)
Not run:
power.roc.test(roc3, roc4)
This is exactly equivalent:
power.roc.test(roc1, roc2, reuse.auc=FALSE, partial.auc=c(1, 0.9))

End(Not run)
With Obuchowski variance
power.roc.test(roc3, roc4, method="obuchowski")

Significance level
With bootstrap variance (default)
Not run:
power.roc.test(roc3, roc4, power=0.9, sig.level=NULL)

End(Not run)
With Obuchowski variance
power.roc.test(roc3, roc4, power=0.9, sig.level=NULL, method="obuchowski")

With only binormal parameters given
From example 2 of Obuchowski and McClish, 1997.
ob.params <- list(A1=2.6, B1=1, A2=1.9, B2=1, rn=0.6, ra=0.6, FPR11=0,
FPR12=0.2, FPR21=0, FPR22=0.2, delta=0.037)

power.roc.test(ob.params, power=0.8, sig.level=0.05)
power.roc.test(ob.params, power=0.8, sig.level=NULL, ncases=107)
power.roc.test(ob.params, power=NULL, sig.level=0.05, ncases=107)

print Print a ROC curve object

Description

This function prints a ROC curve, AUC or CI object and return it invisibly.

print 59

Usage

S3 method for class 'roc'
print(x, digits=max(3, getOption("digits") - 3), call=TRUE, ...)
S3 method for class 'multiclass.roc'
print(x, digits=max(3, getOption("digits") -
3), call=TRUE, ...)

S3 method for class 'smooth.roc'
print(x, digits=max(3, getOption("digits") - 3),
call=TRUE, ...)
S3 method for class 'auc'
print(x, digits=max(3, getOption("digits") - 3), ...)
S3 method for class 'multiclass.auc'
print(x, digits=max(3, getOption("digits") - 3), ...)
S3 method for class 'ci.auc'
print(x, digits=max(3, getOption("digits") - 3), ...)
S3 method for class 'ci.thresholds'
print(x, digits=max(3, getOption("digits") - 3), ...)
S3 method for class 'ci.se'
print(x, digits=max(3, getOption("digits") - 3), ...)
S3 method for class 'ci.sp'
print(x, digits=max(3, getOption("digits") - 3), ...)
S3 method for class 'ci.coords'
print(x, digits=max(3, getOption("digits") - 3), ...)

Arguments

x a roc, auc or ci object, from the roc, auc or ci functions respectively.

call if the call is printed.

digits the number of significant figures to print. See signif for more details.

... further arguments passed to or from other methods. In particular, print.roc
calls print.auc and the print.ci variants internally, and a digits argument
is propagated. Not used in print.auc and print.ci variants.

Value

These functions return the object they were passed invisibly.

See Also

roc, auc, ci, coords

Examples

data(aSAH)

Print a roc object:
rocobj <- roc(aSAH$outcome, aSAH$s100b)
print(rocobj)

60 roc

Print a smoothed roc object
print(smooth(rocobj))

implicit printing
roc(aSAH$outcome, aSAH$s100b)

Print an auc and a ci object, from the ROC object or calling
the dedicated function:
print(rocobj$auc)
print(ci(rocobj))

roc Build a ROC curve

Description

This is the main function of the pROC package. It builds a ROC curve and returns a “roc” object,
a list of class “roc”. This object can be printed, plotted, or passed to the functions auc, ci,
smooth.roc and coords. Additionally, two roc objects can be compared with roc.test.

Usage

roc(...)
S3 method for class 'formula'
roc(formula, data, ...)
Default S3 method:
roc(response, predictor, controls, cases,
density.controls, density.cases,
levels=base::levels(as.factor(response)), percent=FALSE, na.rm=TRUE,
direction=c("auto", "<", ">"), algorithm = 1, smooth=FALSE, auc=TRUE, ci=FALSE,
plot=FALSE, smooth.method="binormal", ci.method=NULL, density=NULL, ...)

Arguments

response a factor, numeric or character vector of responses, typically encoded with 0 (con-
trols) and 1 (cases). Only two classes can be used in a ROC curve. If the vector
contains more than two unique values, or if their order could be ambiguous, use
levels to specify which values must be used as control and case value.

predictor a numeric vector of the same length than response, containing the predicted
value of each observation. An ordered factor is coerced to a numeric.

controls, cases

instead of response, predictor, the data can be supplied as two vectors con-
taining the predictor values for control and case observations.

density.controls, density.cases

a smoothed ROC curve can be built directly from two densities on identical x
points, as in smooth.roc.

roc 61

formula a formula of the type response~predictor. If mulitple predictors are passed,
a named list of roc objects will be returned.

data a matrix or data.frame containing the variables in the formula. See model.frame
for more details.

levels the value of the response for controls and cases respectively. By default, the first
two values of levels(as.factor(response)) are taken, and the remaining
levels are ignored. It usually captures two-class factor data correctly, but will
frequently fail for other data types (response factor with more than 2 levels, or
for example if your response is coded “controls” and “cases”, the levels will be
inverted) and must then be specified here. If your data is coded as 0 and 1 with
0 being the controls, you can safely omit this argument.

percent if the sensitivities, specificities and AUC must be given in percent (TRUE) or in
fraction (FALSE, default).

na.rm if TRUE, the NA values will be removed.

direction in which direction to make the comparison? “auto” (default): automatically
define in which group the median is higher and take the direction accordingly.
“>”: if the predictor values for the control group are higher than the values of
the case group (controls > t >= cases). “<”: if the predictor values for the control
group are lower or equal than the values of the case group (controls < t <= cases).

algorithm the method used to compute sensitivity and specificity, an integer of length 1
between 0 and 4. 1 (default): a safe, well-tested, pure-R code that is efficient
when the number of thresholds is low. It goes with O(T*N). 2: an alternative
pure-R algorithm that goes in O(N). Typically faster than 1 when the number
of thresholds of the ROC curve is above 1000. Less tested than 1. 3: a C++
implementation of 1, about 3-5x faster. Typically the fastest with ROC curves
with less than 3000-5000 thresholds. 4 (debug only, slow): runs all 3 algorithms
and makes sure they return the same values. 0: use microbenchmark to choose
between 2 and 3.

smooth if TRUE, the ROC curve is passed to smooth to be smoothed.

auc compute the area under the curve (AUC)? If TRUE (default), additional argu-
ments can be passed to auc.

ci compute the confidence interval (CI)? If TRUE (default), additional arguments
can be passed to ci.

plot plot the ROC curve? If TRUE, additional arguments can be passed to plot.roc.
smooth.method, ci.method

in roc.formula and roc.default, the method arguments to smooth.roc (if
smooth=TRUE) and of="auc") must be passed as smooth.method and ci.method
to avoid confusions.

density density argument passed to smooth.roc.

... further arguments passed to or from other methods, and especially:

• auc: partial.auc, partial.auc.focus, partial.auc.correct.
• ci: of, conf.level, boot.n, boot.stratified, progress
• ci.auc:, reuse.auc, method
• ci.thresholds: thresholds

62 roc

• ci.sp: sensitivities
• ci.se: specificities
• plot.roc: add, col and most other arguments to the plot.roc function.

See plot.roc directly for more details.
• smooth: method, n, and all other arguments. See smooth for more details.

Details

This function’s main job is to build a ROC object. See the “Value” section to this page for more
details. Before returning, it will call (in this order) the smooth.roc, auc, ci and plot.roc functions
if smooth auc, ci and plot.roc (respectively) arguments are set to TRUE. By default, only auc is
called.

Data can be provided as response, predictor, where the predictor is the numeric (or ordered)
level of the evaluated signal, and the response encodes the observation class (control or case). The
level argument specifies which response level must be taken as controls (first value of level)
or cases (second). It can safely be ignored when the response is encoded as 0 and 1, but it will
frequently fail otherwise. By default, the first two values of levels(as.factor(response)) are
taken, and the remaining levels are ignored. This means that if your response is coded “control”
and “case”, the levels will be inverted.

In some cases, it is more convenient to pass the data as controls, cases, but both arguments
are ignored if response, predictor was specified to non-NULL values. It is also possible to pass
density data with density.controls, density.cases, which will result in a smoothed ROC
curve even if smooth=FALSE, but are ignored if response, predictor or controls, cases are
provided.

Specifications for auc, ci and plot.roc are not kept if auc, ci or plot are set to FALSE. Especially,
in the following case:

myRoc <- roc(..., auc.polygon=TRUE, grid=TRUE, plot=FALSE)
plot(myRoc)

the plot will not have the AUC polygon nor the grid. Similarly, when comparing “roc” objects, the
following is not possible:

roc1 <- roc(..., partial.auc=c(1, 0.8), auc=FALSE)
roc2 <- roc(..., partial.auc=c(1, 0.8), auc=FALSE)
roc.test(roc1, roc2)

This will produce a test on the full AUC, not the partial AUC. To make a comparison on the partial
AUC, you must repeat the specifications when calling roc.test:

roc.test(roc1, roc2, partial.auc=c(1, 0.8))

Note that if roc was called with auc=TRUE, the latter syntax will not allow redefining the AUC
specifications. You must use reuse.auc=FALSE for that.

roc 63

Value

If the data contained any NA value and na.rm=FALSE, NA is returned. Otherwise, if smooth=FALSE,
a list of class “roc” with the following fields:

auc if called with auc=TRUE, a numeric of class “auc” as defined in auc.

ci if called with ci=TRUE, a numeric of class “ci” as defined in ci.

response the response vector. Patients whose response is not %in% levels are discarded.
If NA values were removed, a na.action attribute similar to na.omit stores the
row numbers.

predictor the predictor vector converted to numeric as used to build the ROC curve. Pa-
tients whose response is not %in% levels are discarded. If NA values were re-
moved, a na.action attribute similar to na.omit stores the row numbers.

original.predictor, original.response

the response and predictor vectors as passed in argument.

levels the levels of the response as defined in argument.

controls the predictor values for the control observations.

cases the predictor values for the cases.

percent if the sensitivities, specificities and AUC are reported in percent, as defined in
argument.

direction the direction of the comparison, as defined in argument.

fun.sesp the function used to compute sensitivities and specificities. Will be re-used in
bootstrap operations.

sensitivities the sensitivities defining the ROC curve.

specificities the specificities defining the ROC curve.

thresholds the thresholds at which the sensitivities and specificities were computed.

call how the function was called. See match.call for more details.

If smooth=TRUE a list of class “smooth.roc” as returned by smooth, with or without additional
elements auc and ci (according to the call).

Errors

If no control or case observation exist for the given levels of response, no ROC curve can be built
and an error is triggered with message “No control observation” or “No case observation”.

If the predictor is not a numeric or ordered, as defined by as.numeric or as.ordered, the message
“Predictor must be numeric or ordered” is returned.

The message “No valid data provided” is issued when the data wasn’t properly passed. Remember
you need both response and predictor of the same (not null) length, or bot controls and cases.
Combinations such as predictor and cases are not valid and will trigger this error.

64 roc

References

Tom Fawcett (2006) “An introduction to ROC analysis”. Pattern Recognition Letters 27, 861–874.
DOI: 10.1016/j.patrec.2005.10.010.

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for
R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-
2105-12-77.

See Also

auc, ci, plot.roc, print.roc, roc.test

Examples

data(aSAH)

Basic example
roc(aSAH$outcome, aSAH$s100b,

levels=c("Good", "Poor"))
As levels aSAH$outcome == c("Good", "Poor"),
this is equivalent to:
roc(aSAH$outcome, aSAH$s100b)
In some cases, ignoring levels could lead to unexpected results
Equivalent syntaxes:
roc(outcome ~ s100b, aSAH)
roc(aSAH$outcome ~ aSAH$s100b)
with(aSAH, roc(outcome, s100b))
with(aSAH, roc(outcome ~ s100b))

With a formula:
roc(outcome ~ s100b, data=aSAH)

With controls/cases
roc(controls=aSAH$s100b[aSAH$outcome=="Good"], cases=aSAH$s100b[aSAH$outcome=="Poor"])

Inverted the levels: "Poor" are now controls and "Good" cases:
roc(aSAH$outcome, aSAH$s100b,

levels=c("Poor", "Good"))

The result was exactly the same because of direction="auto".
The following will give an AUC < 0.5:
roc(aSAH$outcome, aSAH$s100b,

levels=c("Poor", "Good"), direction="<")

If we prefer counting in percent:
roc(aSAH$outcome, aSAH$s100b, percent=TRUE)

Test the different algorithms:
roc(aSAH$outcome, aSAH$s100b, algorithm = 1)
roc(aSAH$outcome, aSAH$s100b, algorithm = 2)
roc(aSAH$outcome, aSAH$s100b, algorithm = 3)
if (require(microbenchmark)) {

http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77

roc.test 65

roc(aSAH$outcome, aSAH$s100b, algorithm = 0)
}

Plot and CI (see plot.roc and ci for more options):
roc(aSAH$outcome, aSAH$s100b,

percent=TRUE, plot=TRUE, ci=TRUE)

Smoothed ROC curve
roc(aSAH$outcome, aSAH$s100b, smooth=TRUE)
this is not identical to
smooth(roc(aSAH$outcome, aSAH$s100b))
because in the latter case, the returned object contains no AUC

roc.test Compare the AUC of two ROC curves

Description

This function compares the AUC or partial AUC of two correlated (or paired) or uncorrelated (un-
paired) ROC curves. Several syntaxes are available: two object of class roc (which can be AUC or
smoothed ROC), or either three vectors (response, predictor1, predictor2) or a response vector and
a matrix or data.frame with two columns (predictors).

Usage

roc.test(...)
S3 method for class 'roc'
roc.test(roc1, roc2, method=c("delong", "bootstrap",
"venkatraman", "sensitivity", "specificity"), sensitivity = NULL,
specificity = NULL, alternative = c("two.sided", "less", "greater"),
paired=NULL, reuse.auc=TRUE, boot.n=2000, boot.stratified=TRUE,
ties.method="first", progress=getOption("pROCProgress")$name,
parallel=FALSE, ...)
S3 method for class 'auc'
roc.test(roc1, roc2, ...)
S3 method for class 'smooth.roc'
roc.test(roc1, roc2, ...)
S3 method for class 'formula'
roc.test(formula, data, ...)
Default S3 method:
roc.test(response, predictor1, predictor2=NULL,
na.rm=TRUE, method=NULL, ...)

Arguments

roc1, roc2 the two ROC curves to compare. Either “roc”, “auc” or “smooth.roc” objects
(types can be mixed).

response a vector or factor, as for the roc function.

66 roc.test

predictor1 a numeric or ordered vector as for the roc function, or a matrix or data.frame
with predictors two colums.

predictor2 only if predictor1 was a vector, the second predictor as a numeric vector.

formula a formula of the type response~predictor1+predictor2.

data a matrix or data.frame containing the variables in the formula. See model.frame
for more details.

na.rm if TRUE, the observations with NA values will be removed.

method the method to use, either “delong”, “bootstrap” or “venkatraman”. The first
letter is sufficient. If omitted, the appropriate method is selected as explained in
details.

sensitivity, specificity

if method="sensitivity" or method="specificity", the respective level where
the test must be assessed as a numeric of length 1.

alternative specifies the alternative hypothesis. Either of “two.sided”, “less” or “greater”.
The first letter is sufficient. Default: “two.sided”. Only “two.sided” is available
with method="venkatraman".

paired a logical indicating whether you want a paired roc.test. If NULL, the paired status
will be auto-detected by are.paired. If TRUE but the paired status cannot be
assessed by are.paired will produce an error.

reuse.auc if TRUE (default) and the “roc” objects contain an “auc” field, re-use these spec-
ifications for the test. See the AUC specification section for more details.

boot.n for method="bootstrap" and method="venkatraman" only: the number of
bootstrap replicates or permutations. Default: 2000 .

boot.stratified

for method="bootstrap" only: should the bootstrap be stratified (same number
of cases/controls in each replicate than in the original sample) or not. Ignored
with method="venkatraman". Default: TRUE .

ties.method for method="venkatraman" only: argument for rank specifying how ties are
handled. Defaults to “first” as described in the paper.

progress the name of progress bar to display. Typically “none”, “win”, “tk” or “text” (see
the name argument to create_progress_bar for more information), but a list
as returned by create_progress_bar is also accepted. See also the “Progress
bars” section of this package’s documentation.

parallel if TRUE, the bootstrap is processed in parallel, using parallel backend provided
by plyr (foreach).

... further arguments passed to or from other methods, especially arguments for roc
and roc.test.roc when calling roc.test.default or roc.test.formula.
Arguments for auc, and txtProgressBar (only char and style) if applicable.

Details

This function compares two ROC curves. It is typically called with the two roc objects to compare.
roc.test.default is provided as a convenience method and creates two roc objects before calling
roc.test.roc.

roc.test 67

Three methods are available: “delong”, “bootstrap” and “venkatraman” (see “Computational de-
tails” section below). “delong” and “bootstrap” are tests over the AUC whereas “venkatraman”
compares the the ROC curves themselves.

Default is to use “delong” method except for comparison of partial AUC, smoothed curves and
curves with different direction, where bootstrap is used. Using “delong” for partial AUC and
smoothed ROCs is not supported in pROC (a warning is produced and “bootstrap” is employed
instead). It is spurious to use “delong” for roc with different direction (a warning is issued but the
spurious comparison is enforced). “venkatraman”’s test cannot be employed to compare smoothed
ROC curves. Additionally, partial AUC specifications are ignored (with a warning), and comparison
of ROC curves with different direction should be used with care (a warning is produced as well).

If alternative="two.sided", a two-sided test for difference in AUC is performed. If alternative="less",
the alternative is that the AUC of roc1 is smaller than the AUC of roc2. For method="venkatraman",
only “two.sided” test is available.

If the paired argument is not provided, the are.paired function is employed to detect the paired
status of the ROC curves. It will test if the original response is identical between the two ROC
curves (this is always the case if the call is made with roc.test.default). This detection is
unlikely to raise false positives, but this possibility cannot be excluded entierly. It would require
equal sample sizes and response values and order in both ROC curves. If it happens to you, use
paired=FALSE. If you know the ROC curves are paired you can pass paired=TRUE. However this
is useless as it will be tested anyway.

For smoothed ROC curves, smoothing is performed again at each bootstrap replicate with the pa-
rameters originally provided. If a density smoothing was performed with user-provided density.cases
or density.controls the bootstrap cannot be performed and an error is issued.

Value

A list of class "htest" with following content:

p.value the p-value of the test.

statistic the value of the Z (method="delong") or D (method="bootstrap") statistics.

alternative the alternative hypothesis.

method the character string “DeLong’s test for two correlated ROC curves” (if method="delong")
or “Bootstrap test for two correlated ROC curves” (if method="bootstrap").

null.value the expected value of the statistic under the null hypothesis, that is 0.

estimate the AUC in the two ROC curves.

data.name the names of the data that was used.

parameter for method="bootstrap" only: the values of the boot.n and boot.stratified
arguments.

AUC specification

The comparison of the AUC of the ROC curves needs a specification of the AUC. The specification
is defined by:

1. the “auc” field in the “roc” objects if reuse.auc is set to TRUE (default)

68 roc.test

2. passing the specification to auc with . . . (arguments partial.auc, partial.auc.correct
and partial.auc.focus). In this case, you must ensure either that the roc object do not
contain an auc field (if you called roc with auc=FALSE), or set reuse.auc=FALSE.

If reuse.auc=FALSE the auc function will always be called with ... to determine the specification,
even if the “roc” objects do contain an auc field.

As well if the “roc” objects do not contain an auc field, the auc function will always be called with
... to determine the specification.

The AUC specification is ignored in the Venkatraman test.

Warning: if the roc object passed to roc.test contains an auc field and reuse.auc=TRUE, auc is not
called and arguments such as partial.auc are silently ignored.

Computation details

With method="bootstrap", the processing is done as follow:

1. boot.n bootstrap replicates are drawn from the data. If boot.stratified is TRUE , each
replicate contains exactly the same number of controls and cases than the original sample,
otherwise if FALSE the numbers can vary.

2. for each bootstrap replicate, the AUC of the two ROC curves are computed and the difference
is stored.

3. The following formula is used:

D =
AUC1−AUC2

s

where s is the standard deviation of the bootstrap differences and AUC1 and AUC2 the AUC
of the two (original) ROC curves.

4. D is then compared to the normal distribution, according to the value of alternative.

See also the Bootstrap section in this package’s documentation.

With method="delong", the processing is done as described in DeLong et al. (1988) for paired
ROC curves. Only comparison of two ROC curves is implemented. The method has been extended
for unpaired ROC curves where the p-value is computed with an unpaired t-test with unequal sample
size and unequal variance.

With method="venkatraman", the processing is done as described in Venkatraman and Begg (1996)
(for paired ROC curves) and Venkatraman (2000) (for unpaired ROC curves) with boot.n permu-
tation of sample ranks (with ties breaking). For consistency reasons, the same argument boot.n as
in bootstrap defines the number of permutations to execute, even though no bootstrap is performed.

For method="specificity", the test assesses if the sensitivity of the ROC curves are different at
the level of specificity given by the specificity argument, which must be a numeric of length
1. Bootstrap is employed as with method="bootstrap" and boot.n and boot.stratified are
available. This is identical to the test proposed by Pepe et al. (2009). The method="sensitivity"
is very similar, but assesses if the specificity of the ROC curves are different at the level of sensitivity
given by the sensitivity argument.

roc.test 69

Warnings

If “auc” specifications are different in both roc objects, the warning “Different AUC specifications
in the ROC curves. Enforcing the inconsistency, but unexpected results may be produced.” is issued.
Unexpected results may be produced.

If one or both ROC curves are “smooth.roc” objects with different smoothing specifications, the
warning “Different smoothing parameters in the ROC curves. Enforcing the inconsistency, but
unexpected results may be produced.” is issued. This warning can be benign, especially if ROC
curves were generated with roc(..., smooth=TRUE) with different arguments to other functions
(such as plot), or if you really want to compare two ROC curves smoothed differently.

If method="delong" and the AUC specification specifies a partial AUC, the warning “Using De-
Long’s test for partial AUC is not supported. Using bootstrap test instead.” is issued. The method
argument is ignored and “bootstrap” is used instead.

If method="delong" and the ROC curve is smoothed, the warning “Using DeLong’s test for smoothed
ROCs is not supported. Using bootstrap test instead.” is issued. The method argument is ignored
and “bootstrap” is used instead.

If method="venkatraman", and the AUC specification specifies a partial AUC, the AUC specifica-
tion is ignored with the warning “Partial AUC is ignored in Venkatraman’s test.”.

If method="venkatraman", and alternative is “less” or “greater”, the warning “Only two-sided
tests are available for Venkatraman. Performing two-sided test instead.” is produced and a two
tailed test is performed.

Both DeLong and Venkatraman’s test ignores the direction of the ROC curve so that if two ROC
curves have a different differ in the value of direction, the warning “(DeLong|Venkatraman)’s test
should not be applied to ROC curves with different directions.” is printed. However, the spurious
test is enforced.

If boot.stratified=FALSE and the sample has a large imbalance between cases and controls, it
could happen that one or more of the replicates contains no case or control observation, or that there
are not enough points for smoothing, producing a NA area. The warning “NA value(s) produced
during bootstrap were ignored.” will be issued and the observation will be ignored. If you have a
large imbalance in your sample, it could be safer to keep boot.stratified=TRUE.

When both ROC curves have an auc of 1 (or 100%), their variances and covariance will always be
null, and therefore the p-value will always be 1. This is true for both “delong”, “bootstrap” and
“venkatraman” methods. This result is misleading, as the variances and covariance are of course
not null. A warning will be displayed to inform of this condition, and of the misleading output.

Errors

An error will also occur if you give a predictor2 when predictor1 is a matrix or a data.frame,
if predictor1 has more than two columns, or if you do not give a predictor2 when predictor1
is a vector.

If density.cases and density.controls were provided for smoothing, the error “Cannot com-
pute the statistic on ROC curves smoothed with density.controls and density.cases.” is issued.

If method="venkatraman" and one of the ROC curves is smoothed, the error “Using Venkatraman’s
test for smoothed ROCs is not supported.” is produced.

With method="specificity", the error “Argument ’specificity’ must be numeric of length 1 for a
specificity test.” is given unless the specificity argument is specified as a numeric of length 1. The

70 roc.test

“Argument ’sensitivity’ must be numeric of length 1 for a sensitivity test.” message is given for
method="sensitivity" under similar conditions.

Acknowledgements

We would like to thank E. S. Venkatraman and Colin B. Begg for their support in the implementation
of their test.

References

Elisabeth R. DeLong, David M. DeLong and Daniel L. Clarke-Pearson (1988) “Comparing the areas
under two or more correlated receiver operating characteristic curves: a nonparametric approach”.
Biometrics 44, 837–845.

James A. Hanley and Barbara J. McNeil (1982) “The meaning and use of the area under a receiver
operating characteristic (ROC) curve”. Radiology 143, 29–36.

Margaret Pepe, Gary Longton and Holly Janes (2009) “Estimation and Comparison of Receiver
Operating Characteristic Curves”. The Stata journal 9, 1.

Xavier Robin, Natacha Turck, Jean-Charles Sanchez and Markus Müller (2009) “Combination of
protein biomarkers”. useR! 2009, Rennes. http://www.agrocampus-ouest.fr/math/useR-2009/
abstracts/user_author.html

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for
R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-
2105-12-77.

E. S. Venkatraman and Colin B. Begg (1996) “A distribution-free procedure for comparing re-
ceiver operating characteristic curves from a paired experiment”. Biometrika 83, 835–848. DOI:
10.1093/biomet/83.4.835.

E. S. Venkatraman (2000) “A Permutation Test to Compare Receiver Operating Characteristic
Curves”. Biometrics 56, 1134–1138. DOI: 10.1111/j.0006-341X.2000.01134.x.

Hadley Wickham (2011) “The Split-Apply-Combine Strategy for Data Analysis”. Journal of Sta-
tistical Software, 40, 1–29. URL: www.jstatsoft.org/v40/i01.

See Also

roc, power.roc.test

CRAN package plyr, employed in this function.

Examples

data(aSAH)

Basic example with 2 roc objects
roc1 <- roc(aSAH$outcome, aSAH$s100b)
roc2 <- roc(aSAH$outcome, aSAH$wfns)
roc.test(roc1, roc2)

Not run:
The latter used Delong's test. To use bootstrap test:
roc.test(roc1, roc2, method="bootstrap")

http://www.agrocampus-ouest.fr/math/useR-2009/abstracts/user_author.html
http://www.agrocampus-ouest.fr/math/useR-2009/abstracts/user_author.html
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1093/biomet/83.4.835
http://dx.doi.org/10.1111/j.0006-341X.2000.01134.x
http://www.jstatsoft.org/v40/i01

roc.test 71

Increase boot.n for a more precise p-value:
roc.test(roc1, roc2, method="bootstrap", boot.n=10000)

End(Not run)

Alternative syntaxes
roc.test(aSAH$outcome, aSAH$s100b, aSAH$wfns)
roc.test(aSAH$outcome, data.frame(aSAH$s100b, aSAH$wfns))

If we had a good a priori reason to think that wfns gives a
better classification than s100b (in other words, AUC of roc1
should be lower than AUC of roc2):
roc.test(roc1, roc2, alternative="less")

Not run:
Comparison can be done on smoothed ROCs
Smoothing is re-done at each iteration, and execution is slow
roc.test(smooth(roc1), smooth(roc2))
or:
roc.test(aSAH$outcome, aSAH$s100b, aSAH$wfns, smooth=TRUE, boot.n=100)

End(Not run)
or from an AUC (no smoothing)
roc.test(auc(roc1), roc2)

Not run:
Comparison of partial AUC:
roc3 <- roc(aSAH$outcome, aSAH$s100b, partial.auc=c(1, 0.8), partial.auc.focus="se")
roc4 <- roc(aSAH$outcome, aSAH$wfns, partial.auc=c(1, 0.8), partial.auc.focus="se")
roc.test(roc3, roc4)
This is strictly equivalent to:
roc.test(roc3, roc4, method="bootstrap")

Alternatively, we could re-use roc1 and roc2 to get the same result:
roc.test(roc1, roc2, reuse.auc=FALSE, partial.auc=c(1, 0.8), partial.auc.focus="se")

Comparison on specificity and sensitivity
roc.test(roc1, roc2, method="specificity", specificity=0.9)
roc.test(roc1, roc2, method="sensitivity", sensitivity=0.9)

End(Not run)

Spurious use of DeLong's test with different direction:
roc5 <- roc(aSAH$outcome, aSAH$s100b, direction="<")
roc6 <- roc(aSAH$outcome, aSAH$s100b, direction=">")
roc.test(roc5, roc6, method="delong")

Not run:
Comparisons of the ROC curves
roc.test(roc1, roc2, method="venkatraman")

End(Not run)

72 smooth.roc

Unpaired tests
roc7 <- roc(aSAH$outcome, aSAH$s100b)
artificially create an roc8 unpaired with roc7
roc8 <- roc(aSAH$outcome[1:100], aSAH$s100b[1:100])
Not run:
roc.test(roc7, roc8, paired=FALSE, method="delong")
roc.test(roc7, roc8, paired=FALSE, method="bootstrap")
roc.test(roc7, roc8, paired=FALSE, method="venkatraman")
roc.test(roc7, roc8, paired=FALSE, method="specificity", specificity=0.9)

End(Not run)

smooth.roc Smooth a ROC curve

Description

This function smoothes a ROC curve of numeric predictor. By default, a binormal smoothing is
performed, but density or custom smoothings are supported.

Usage

smooth(...)
Default S3 method:
smooth(...)
S3 method for class 'roc'
smooth(roc,
method=c("binormal", "density", "fitdistr", "logcondens",
"logcondens.smooth"), n=512, bw = "nrd0", density=NULL,
density.controls=density, density.cases=density,
start=NULL, start.controls=start, start.cases=start,
reuse.auc=TRUE, reuse.ci=FALSE, ...)
S3 method for class 'smooth.roc'
smooth(smooth.roc, ...)

Arguments

roc, smooth.roc

a “roc” object from the roc function, or a “smooth.roc” object from the smooth.roc
function.

method “binormal”, “density”, “fitdistr”, “logcondens”, “"logcondens.smooth"”, or a
function returning a list of smoothed sensitivities and specificities.

n the number of equally spaced points where the smoothed curve will be calcu-
lated.

bw if method="density" and density.controls and density.cases are not pro-
vided, bw is passed to density to determine the bandwidth of the density Can be
a character string (“nrd0”, “nrd”, “ucv”, “bcv” or “SJ”, but any name matching
a function prefixed with “bw.” is supported) or a numeric value, as described in
density. Defaults to “nrd0”.

smooth.roc 73

density, density.controls, density.cases

if method="density", a numeric value of density (over the y axis) or a function
returning a density (such as density. If method="fitdistr", a densfun argu-
ment for fitdistr. If the value is different for control and case observations,
density.controls and density.cases can be employed instead, otherwise
density will be propagated to both density.controls and density.cases.

start, start.controls, start.cases

if method="fitdistr", optionnal start arguments for . start.controls and
start.cases allows to specify different distributions for controls and cases.

reuse.auc, reuse.ci

if TRUE (default for reuse.auc) and the “roc” objects contain “auc” or “ci” fields,
re-use these specifications to regenerate auc or ci on the smoothed ROC curve
with the original parameters. If FALSE, the object returned will not contain “auc”
or “ci” fields. It is currently not possible to redefine auc and ci options directly:
you need to call auc or ci later for that.

... further arguments passed to or from other methods, and especially to density
(only cut, adjust, and kernel, plus window for compatibility with S+) and
fitdistr. Also passed to to method if it is a function.

Details

If method="binormal", a linear model is fitted to the quantiles of the sensitivities and specificities.
Smoothed sensitivities and specificities are then generated from this model on n points. This simple
approach was found to work well for most ROC curves, but it may produce hooked smooths in
some situations (see in Hanley (1988)).

With method="density", the density function is employed to generate a smooth kernel density of
the control and case observations as described by Zhou et al. (1997), unless density.controls or
density.cases are provided directly. bw can be given to specify a bandwidth to use with density.
It can be a numeric value or a character string (“nrd0”, “nrd”, “ucv”, “bcv” or “SJ”, but any name
matching a function prefixed with “bw.” is supported). In the case of a character string, the whole
predictor data is employed to determine the numeric value to use on both controls and cases. De-
pending on your data, it might be a good idea to specify the kernel argument for density. By
default, “gaussian” is used, but “epanechnikov”, “rectangular”, “triangular”, “biweight”, “cosine”
and “optcosine” are supported. As all the kernels are symetrical, it might help to normalize the data
first (that is, before calling roc), for example with quantile normalization:

norm.x <- qnorm(rank(x)/(length(x)+1))
smooth(roc(response, norm.x, ...), ...)

Additionally, density can be a function which must return either a numeric vector of densities over
the y axis or a list with a “y” item like the density function. It must accept the following input:

density.fun(x, n, from, to, bw, kernel, ...)

It is important to honour n, from and to in order to have the densities evaluated on the same points
for controls and cases. Failing to do so and returning densities of different length will produce an

74 smooth.roc

error. It is also a good idea to use a constant smoothing parameter (such as bw) especially when
controls and cases have a different number of observations, to avoid producing smoother or rougher
densities.

If method="fitdistr", the fitdistr function from the MASS package is employed to fit param-
eters for the density function density with optionnal start parameters start. The density func-
tion are fitted separately in control (density.controls, start.controls) and case observations
(density.cases, start.cases). density can be one of the character values allowed by fitdistr
or a density function (such as dnorm, dweibull, ...).

The method="logcondens" and method="logcondens.smooth" use the logcondens package to
generate a non smoothed or smoothed (respectively) log-concave density estimate of of the control
and case observation with the logConROC function.

Finally, method can also be a function. It must return a list with exactly 2 elements named “sensi-
tivities” and “specificities”, which must be numeric vectors between 0 and 1 or 100 (depending on
the percent argument to roc). It is passed all the arguments to the smooth function.

smooth.default forces the usage of the smooth function in the stats package, so that other code
relying on smooth should continue to function normally.

Smoothed ROC curves can be passed to smooth again. In this case, the smoothing is not re-applied
on the smoothed ROC curve but the original “roc” object will be re-used.

Value

A list of class “smooth.roc” with the following fields:

sensitivities the smoothed sensitivities defining the ROC curve.

specificities the smoothed specificities defining the ROC curve.

percent if the sensitivities, specificities and AUC are reported in percent, as defined in
argument.

direction the direction of the comparison, as defined in argument.

thresholds the thresholds at which the sensitivities and specificities were computed.

call how the function was called. See match.call for more details.

smoothing.args a list of the arguments used for the smoothing. Will serve to apply the smoothing
again in further bootstrap operations.

auc if the original ROC curve contained an AUC, it is computed again on the smoothed
ROC.

ci if the original ROC curve contained a CI, it is computed again on the smoothed
ROC.

fit.controls, fit.cases

with method="fitdistr" only: the result of MASS’s fitdistr function for
controls and cases, with an additional “densfun” item indicating the density
function, if possible as character.

logcondens with method="logcondens" and method="logcondens" only: the result of log-
condens’s logConROC function.

Attributes: Additionally, the original roc object is stored as a “roc” attribute.

smooth.roc 75

Errors

If method is a function, the return values will be checked thoroughly for validity (list with two
numeric elements of the same length named “sensitivities” and “specificities” with values in the
range of possible values for sensitivities and specificities).

The message “The ’density’ function must return a numeric vector or a list with a ’y’ item.” will
be displayed if the density function did not return a valid output. The message “Length of ’den-
sity.controls’ and ’density.cases’ differ.” will be displayed if the returned value differ in length.

Binormal smoothing cannot smooth ROC curve defined by only one point. Any such attempt will
fail with the error “ROC curve not smoothable (not enough points).”.

If the smooth ROC curve was generated by roc with density.controls and density.cases nu-
meric arguments, it cannot be smoothed and the error “Cannot smooth a ROC curve generated
directly with numeric ’density.controls’ and ’density.cases’.” is produced.

fitdistr and density smoothing methods require a numeric predictor. If the ROC curve to
smooth was generated with an ordered factor only binormal smoothing can be applied and the
message “ROC curves of ordered predictors can be smoothed only with binormal smoothing.” is
displayed otherwise.

fitdistr, logcondens and logcondens.smooth methods require additional packages. If not avail-
able, the following message will be displayed with the required command to install the package:
“Package ? not available, required with method=’?’. Please install it with ’install.packages("?")’. ”

References

James E. Hanley (1988) “The robustness of the “binormal” assumptions used in fitting ROC curves”.
Medical Decision Making 8, 197–203.

Lutz Duembgen, Kaspar Rufibach (2011) “logcondens: Computations Related to Univariate Log-
Concave Density Estimation”. Journal of Statistical Software, 39, 1–28. URL: jstatsoft.org/v39/i06.

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package for
R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7, 77. DOI: 10.1186/1471-
2105-12-77.

Kaspar Rufibach (2011) “A Smooth ROC Curve Estimator Based on Log-Concave Density Esti-
mates”. The International Journal of Biostatistics, 8, accepted. DOI: 10.1515/1557-4679.1378.
arXiv: 1103.1787.

William N. Venables, Brian D. Ripley (2002). “Modern Applied Statistics with S”. New York,
Springer. Google books.

Kelly H. Zou, W. J. Hall and David E. Shapiro (1997) “Smooth non-parametric receiver operating
characteristic (ROC) curves for continuous diagnostic tests”. Statistics in Medicine 18, 2143–2156.
DOI: 10.1002/(SICI)1097-0258(19971015)16:19<2143::AID-SIM655>3.0.CO;2-3.

See Also

roc

CRAN packages MASS and logcondens employed in this function.

http://www.jstatsoft.org/v39/i06/
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1515/1557-4679.1378
http://arxiv.org/abs/1103.1787
http://books.google.ch/books?id=974c4vKurNkC
http://dx.doi.org/10.1002/(SICI)1097-0258(19971015)16:19<2143::AID-SIM655>3.0.CO;2-3

76 smooth.roc

Examples

data(aSAH)

Basic example
rocobj <- roc(aSAH$outcome, aSAH$s100b)
smooth(rocobj)
or directly with roc()
roc(aSAH$outcome, aSAH$s100b, smooth=TRUE)

plotting
plot(rocobj)
rs <- smooth(rocobj, method="binormal")
plot(rs, add=TRUE, col="green")
rs2 <- smooth(rocobj, method="density")
plot(rs2, add=TRUE, col="blue")
rs3 <- smooth(rocobj, method="fitdistr", density="lognormal")
plot(rs3, add=TRUE, col="magenta")
rs4 <- smooth(rocobj, method="logcondens")
plot(rs4, add=TRUE, col="brown")
rs5 <- smooth(rocobj, method="logcondens.smooth")
plot(rs5, add=TRUE, col="orange")
legend("bottomright", legend=c("Empirical", "Binormal", "Density", "Log-normal",

"Log-concave density", "Smoothed log-concave density"),
col=c("black", "green", "blue", "magenta", "brown", "orange"), lwd=2)

Advanced smoothing

if we know the distributions are normal with sd=0.1 and an unknown mean:
smooth(rocobj, method="fitdistr", density=dnorm, start=list(mean=1), sd=.1)
different distibutions for controls and cases:
smooth(rocobj, method="fitdistr", density.controls="normal", density.cases="lognormal")

with densities
bw <- bw.nrd0(rocobj$predictor)
density.controls <- density(rocobj$controls, from=min(rocobj$predictor) - 3 * bw,

to=max(rocobj$predictor) + 3*bw, bw=bw, kernel="gaussian")
density.cases <- density(rocobj$cases, from=min(rocobj$predictor) - 3 * bw,

to=max(rocobj$predictor) + 3*bw, bw=bw, kernel="gaussian")
smooth(rocobj, method="density", density.controls=density.controls$y,

density.cases=density.cases$y)
which is roughly what is done by a simple:
smooth(rocobj, method="density")

Not run:
Smoothing artificial ROC curves

rand.unif <- runif(1000, -1, 1)
rand.exp <- rexp(1000)
rand.norm <-
rnorm(1000)

two normals

smooth.roc 77

roc.norm <- roc(controls=rnorm(1000), cases=rnorm(1000)+1, plot=TRUE)
plot(smooth(roc.norm), col="green", lwd=1, add=TRUE)
plot(smooth(roc.norm, method="density"), col="red", lwd=1, add=TRUE)
plot(smooth(roc.norm, method="fitdistr"), col="blue", lwd=1, add=TRUE)
plot(smooth(roc.norm, method="logcondens"), col="brown", lwd=1, add=TRUE)
plot(smooth(roc.norm, method="logcondens.smooth"), col="orange", lwd=1, add=TRUE)
legend("bottomright", legend=c("empirical", "binormal", "density", "fitdistr",

"logcondens", "logcondens.smooth"),
col=c(par("fg"), "green", "red", "blue", "brown", "orange"), lwd=c(2, 1, 1, 1))

deviation from the normality
roc.norm.exp <- roc(controls=rnorm(1000), cases=rexp(1000), plot=TRUE)
plot(smooth(roc.norm.exp), col="green", lwd=1, add=TRUE)
plot(smooth(roc.norm.exp, method="density"), col="red", lwd=1, add=TRUE)
Wrong fitdistr: normality assumed by default
plot(smooth(roc.norm.exp, method="fitdistr"), col="blue", lwd=1, add=TRUE)
Correct fitdistr
plot(smooth(roc.norm.exp, method="fitdistr", density.controls="normal",

density.cases="exponential"), col="purple", lwd=1, add=TRUE)
plot(smooth(roc.norm.exp, method="logcondens"), col="brown", lwd=1, add=TRUE)
plot(smooth(roc.norm.exp, method="logcondens.smooth"), col="orange", lwd=1, add=TRUE)
legend("bottomright", legend=c("empirical", "binormal", "density",

"wrong fitdistr", "correct fitdistr",
"logcondens", "logcondens.smooth"),

col=c(par("fg"), "green", "red", "blue", "purple", "brown", "orange"), lwd=c(2, 1, 1, 1, 1))

large deviation from the normality
roc.unif.exp <- roc(controls=runif(1000, 2, 3), cases=rexp(1000)+2, plot=TRUE)
plot(smooth(roc.unif.exp), col="green", lwd=1, add=TRUE)
plot(smooth(roc.unif.exp, method="density"), col="red", lwd=1, add=TRUE)
plot(smooth(roc.unif.exp, method="density", bw="ucv"), col="magenta", lwd=1, add=TRUE)
Wrong fitdistr: normality assumed by default (uniform distributions not handled)
plot(smooth(roc.unif.exp, method="fitdistr"), col="blue", lwd=1, add=TRUE)
plot(smooth(roc.unif.exp, method="logcondens"), col="brown", lwd=1, add=TRUE)
plot(smooth(roc.unif.exp, method="logcondens.smooth"), col="orange", lwd=1, add=TRUE)
legend("bottomright", legend=c("empirical", "binormal", "density",

"density ucv", "wrong fitdistr",
"logcondens", "logcondens.smooth"),

col=c(par("fg"), "green", "red", "magenta", "blue", "brown", "orange"), lwd=c(2, 1, 1, 1, 1))

End(Not run)

2 uniform distributions with a custom density function
unif.density <- function(x, n, from, to, bw, kernel, ...) {

smooth.x <- seq(from=from, to=to, length.out=n)
smooth.y <- dunif(smooth.x, min=min(x), max=max(x))
return(smooth.y)

}
roc.unif <- roc(controls=runif(1000, -1, 1), cases=runif(1000, 0, 2), plot=TRUE)
s <- smooth(roc.unif, method="density", density=unif.density)
plot(roc.unif)
plot(s, add=TRUE, col="grey")

78 var.roc

Not run:
you can bootstrap a ROC curve smoothed with a density function:
ci(s, boot.n=100)

End(Not run)

var.roc Variance of a ROC curve

Description

These functions compute the variance of the AUC of a ROC curve.

Usage

var(...)
Default S3 method:
var(...)
S3 method for class 'auc'
var(auc, ...)
S3 method for class 'roc'
var(roc, method=c("delong", "bootstrap", "obuchowski"),
boot.n = 2000, boot.stratified = TRUE, reuse.auc=TRUE,
progress = getOption("pROCProgress")$name, parallel=FALSE, ...)
S3 method for class 'smooth.roc'
var(smooth.roc, ...)

Arguments

roc, smooth.roc, auc

a “roc” object from the roc function, a “smooth.roc” object from the smooth.roc
function or an “auc” object from the auc function.

method the method to use, either “delong” or “bootstrap”. The first letter is sufficient. If
omitted, the appropriate method is selected as explained in details.

reuse.auc if TRUE (default) and the “roc” objects contain an “auc” field, re-use these spec-
ifications for the test. See details.

boot.n for method="bootstrap" only: the number of bootstrap replicates or permuta-
tions. Default: 2000 .

boot.stratified

for method="bootstrap" only: should the bootstrap be stratified (same number
of cases/controls in each replicate than in the original sample) or not. Default:
TRUE .

progress the name of progress bar to display. Typically “none”, “win”, “tk” or “text” (see
the name argument to create_progress_bar for more information), but a list
as returned by create_progress_bar is also accepted. See also the “Progress
bars” section of this package’s documentation.

var.roc 79

parallel if TRUE, the bootstrap is processed in parallel, using parallel backend provided
by plyr (foreach).

... further arguments passed to or from other methods, especially arguments for
var.roc when calling var, var.auc and var.smooth.roc. Arguments for auc
(if reuse.auc=FALSE) and txtProgressBar (only char and style) if applica-
ble.

Details

The var function computes the variance of the AUC of a ROC curve. It is typically called with the
roc object of interest. Two methods are available: “delong” and “bootstrap” (see “Computational
details” section below).

The default is to use “delong” method except for with partial AUC and smoothed curves where
“bootstrap” is employed. Using “delong” for partial AUC and smoothed ROCs is not supported (a
warning is produced and “bootstrap” is employed instead).

For smoothed ROC curves, smoothing is performed again at each bootstrap replicate with the pa-
rameters originally provided. If a density smoothing was performed with user-provided density.cases
or density.controls the bootstrap cannot be performed and an error is issued.

var.default forces the usage of the var function in the stats package, so that other code relying
on var should continue to function normally.

Value

The numeric value of the variance.

AUC specification

var needs a specification of the AUC to compute the variance of the AUC of the ROC curve. The
specification is defined by:

1. the “auc” field in the “roc” objects if reuse.auc is set to TRUE (default)

2. passing the specification to auc with . . . (arguments partial.auc, partial.auc.correct
and partial.auc.focus). In this case, you must ensure either that the roc object do not
contain an auc field (if you called roc with auc=FALSE), or set reuse.auc=FALSE.

If reuse.auc=FALSE the auc function will always be called with ... to determine the specification,
even if the “roc” objects do contain an auc field.

As well if the “roc” objects do not contain an auc field, the auc function will always be called with
... to determine the specification.

Warning: if the roc object passed to roc.test contains an auc field and reuse.auc=TRUE, auc is not
called and arguments such as partial.auc are silently ignored.

Computation details

With method="bootstrap", the processing is done as follow:

1. boot.n bootstrap replicates are drawn from the data. If boot.stratified is TRUE , each
replicate contains exactly the same number of controls and cases than the original sample,
otherwise if FALSE the numbers can vary.

80 var.roc

2. for each bootstrap replicate, the AUC of the ROC curve is computed and stored.

3. the variance of the resampled AUCs are computed and returned.

With method="delong", the processing is done as described in Hanley and Hajian-Tilaki (1997).

With method="obuchowski", the processing is done as described in Obuchowski and McClish
(1997), Table 1 and Equation 4, p. 1530–1531. The computation of g for partial area under the
ROC curve is modified as:

expr1 ∗ (2 ∗ pi ∗ expr2)(−1) ∗ (−expr4)−A ∗B ∗ expr1 ∗ (2 ∗ pi ∗ expr23)(−1/2) ∗ expr3

.

Binormality assumption

The “obuchowski” method makes the assumption that the data is binormal. If the data shows a
deviation from this assumption, it might help to normalize the data first (that is, before calling roc),
for example with quantile normalization:

norm.x <- qnorm(rank(x)/(length(x)+1))
var(roc(response, norm.x, ...), ...)

“delong” and “bootstrap” methods make no such assumption.

Warnings

If method="delong" and the AUC specification specifies a partial AUC, the warning “Using De-
Long for partial AUC is not supported. Using bootstrap test instead.” is issued. The method
argument is ignored and “bootstrap” is used instead.

If method="delong" and the ROC curve is smoothed, the warning “Using DeLong for smoothed
ROCs is not supported. Using bootstrap test instead.” is issued. The method argument is ignored
and “bootstrap” is used instead.

If boot.stratified=FALSE and the sample has a large imbalance between cases and controls, it
could happen that one or more of the replicates contains no case or control observation, or that there
are not enough points for smoothing, producing a NA area. The warning “NA value(s) produced
during bootstrap were ignored.” will be issued and the observation will be ignored. If you have a
large imbalance in your sample, it could be safer to keep boot.stratified=TRUE.

When the ROC curve has an auc of 1 (or 100%), the variance will always be null. This is true for
both “delong” and “bootstrap” methods that can not properly assess the variance in this case. This
result is misleading, as the variance is of course not null. A warning will be displayed to inform of
this condition, and of the misleading output.

Errors

If density.cases and density.controls were provided for smoothing, the error “Cannot com-
pute the covariance on ROC curves smoothed with density.controls and density.cases.” is issued.

var.roc 81

References

Elisabeth R. DeLong, David M. DeLong and Daniel L. Clarke-Pearson (1988) “Comparing the areas
under two or more correlated receiver operating characteristic curves: a nonparametric approach”.
Biometrics 44, 837–845.

James A. Hanley and Karim O. Hajian-Tilaki (1997) “Sampling variability of nonparametric esti-
mates of the areas under receiver operating characteristic curves: An update”. Academic Radiology
4, 49–58. DOI: 10.1016/S1076-6332(97)80161-4.

Nancy A. Obuchowski, Donna K. McClish (1997). “Sample size determination for diagnostic ac-
curary studies involving binormal ROC curve indices”. Statistics in Medicine, 16(13), 1529–1542.
DOI: (SICI)1097-0258(19970715)16:13<1529::AID-SIM565>3.0.CO;2-H.

Hadley Wickham (2011) “The Split-Apply-Combine Strategy for Data Analysis”. Journal of Sta-
tistical Software, 40, 1–29. URL: www.jstatsoft.org/v40/i01.

See Also

roc, cov.roc

CRAN package plyr, employed in this function.

Examples

data(aSAH)

Basic example
roc1 <- roc(aSAH$outcome, aSAH$s100b)
roc2 <- roc(aSAH$outcome, aSAH$wfns)
var(roc1)
var(roc2)

We could also write it in one line:
var(roc(aSAH$outcome, aSAH$s100b))

Not run:
The latter used Delong. To use bootstrap:
var(roc1, method="bootstrap")
Decrease boot.n for a faster execution
var(roc1,method="bootstrap", boot.n=1000)

End(Not run)

To use obuchowski:
var(roc1, method="obuchowski")

Not run:
Variance of smoothed ROCs:
Smoothing is re-done at each iteration, and execution is slow
var(smooth(roc1))

End(Not run)

or from an AUC (no smoothing)

http://dx.doi.org/10.1016/S1076-6332(97)80161-4
http://dx.doi.org/10.1002/(SICI)1097-0258(19970715)16:13<1529::AID-SIM565>3.0.CO;2-H
http://www.jstatsoft.org/v40/i01

82 var.roc

var(auc(roc1))

Test data from Hanley and Hajian-Tilaki, 1997
disease.present <- c("Yes", "No", "Yes", "No", "No", "Yes", "Yes", "No",

"No", "Yes", "No", "No", "Yes", "No", "No")
field.strength.1 <- c(1, 2, 5, 1, 1, 1, 2, 1, 2, 2, 1, 1, 5, 1, 1)
field.strength.2 <- c(1, 1, 5, 1, 1, 1, 4, 1, 2, 2, 1, 1, 5, 1, 1)
roc3 <- roc(disease.present, field.strength.1)
roc4 <- roc(disease.present, field.strength.2)
Assess the variance:
var(roc3)
var(roc4)

Not run:
With bootstrap:
var(roc3, method="bootstrap")
var(roc4, method="bootstrap")

End(Not run)

Index

∗Topic aplot
lines.roc, 43
plot.ci, 46
plot.roc, 48
pROC-package, 2

∗Topic datasets
aSAH, 10

∗Topic hplot
lines.roc, 43
plot.ci, 46
plot.roc, 48
pROC-package, 2

∗Topic htest
pROC-package, 2
roc.test, 65

∗Topic logic
are.paired, 8
has.partial.auc, 42

∗Topic methods
groupGeneric, 41

∗Topic multivariate
cov.roc, 36
roc.test, 65

∗Topic nonparametric
auc, 11
ci, 14
ci.auc, 16
ci.coords, 20
ci.se, 23
ci.sp, 26
ci.thresholds, 29
coords, 32
cov.roc, 36
lines.roc, 43
multiclass.roc, 44
plot.ci, 46
plot.roc, 48
power.roc.test, 54
print, 58

pROC-package, 2
roc, 60
roc.test, 65
smooth.roc, 72
var.roc, 78

∗Topic package
pROC-package, 2

∗Topic print
print, 58
pROC-package, 2

∗Topic programming
are.paired, 8
has.partial.auc, 42

∗Topic roc
are.paired, 8
auc, 11
ci, 14
ci.auc, 16
ci.coords, 20
ci.se, 23
ci.sp, 26
ci.thresholds, 29
coords, 32
cov.roc, 36
has.partial.auc, 42
lines.roc, 43
multiclass.roc, 44
plot.ci, 46
plot.roc, 48
power.roc.test, 54
print, 58
pROC-package, 2
roc, 60
roc.test, 65
smooth.roc, 72
var.roc, 78

∗Topic smooth
smooth.roc, 72

∗Topic univar

83

84 INDEX

auc, 11
ci, 14
ci.auc, 16
ci.coords, 20
ci.se, 23
ci.sp, 26
ci.thresholds, 29
coords, 32
lines.roc, 43
multiclass.roc, 44
plot.ci, 46
plot.roc, 48
power.roc.test, 54
print, 58
pROC-package, 2
roc, 60
smooth.roc, 72
var.roc, 78

∗Topic utilities
auc, 11
ci, 14
ci.auc, 16
ci.coords, 20
ci.se, 23
ci.sp, 26
ci.thresholds, 29
coords, 32
cov.roc, 36
lines.roc, 43
multiclass.roc, 44
plot.ci, 46
plot.roc, 48
power.roc.test, 54
print, 58
pROC-package, 2
roc, 60
roc.test, 65
smooth.roc, 72
var.roc, 78

%in%, 63

abline, 52
are.paired, 3, 8, 37, 39, 66, 67
as.numeric, 63
as.ordered, 63
aSAH, 4, 10
auc, 2, 3, 9, 10, 11, 15, 17–19, 36–39, 41–43,

45, 46, 52, 53, 55, 56, 59–66, 68, 69,
73, 78–80

ci, 2, 3, 6, 9, 10, 12, 14, 19, 22, 25, 28, 31, 41,
45, 53, 59–64, 73

ci.auc, 3, 5, 10, 13, 15, 16, 61
ci.coords, 3, 5, 15, 20, 35
ci.se, 3, 5, 10, 15, 23, 28, 47, 62
ci.sp, 3, 5, 10, 15, 25, 26, 47, 62
ci.thresholds, 3, 5, 10, 15, 29, 47, 61
combined, 45
confidence interval, 4
coords, 3, 10, 20–22, 32, 51, 59, 60
cov, 3, 37, 55, 56
cov (cov.roc), 36
cov.roc, 36, 81
covariance, 4, 55
create_progress_bar, 17, 21, 23, 26, 29, 37,

66, 78

data.frame, 69
density, 72, 73
dnorm, 74
dweibull, 74

Extract, 33

fitdistr, 73, 74

groupGeneric, 41, 42

has.partial.auc, 3, 42

identical, 9
interactive, 4

lines, 44
lines.roc, 3, 43
lines.smooth.roc (lines.roc), 43
list, 54, 73
logConROC, 74

match.call, 45, 63, 74
matching, 72, 73
Math (groupGeneric), 41
matrix, 69
model.frame, 45, 61, 66
multiclass.roc, 11, 13, 44

na.omit, 45, 63
nrd0, 72
numeric, 75

Ops (groupGeneric), 41

INDEX 85

par, 44, 50–52
plot, 2, 3, 12, 50, 52
plot.ci, 3, 10, 25, 28, 46, 52
plot.default, 44
plot.roc, 10, 44, 47, 48, 61, 62, 64
plot.smooth.roc (plot.roc), 48
plot.window, 50
points, 51, 52
polygon, 47, 51, 52
power.roc.test, 54, 70
power.t.test, 55
print, 3, 58
print.roc, 10, 64
pROC (pROC-package), 2
pROC-package, 2

qnorm, 17

rank, 66
roc, 2, 3, 5, 6, 9–32, 35–38, 40, 44, 45, 48, 50,

52–56, 59, 60, 65–68, 70, 72–75,
78–81

roc.test, 3, 9, 10, 56, 60, 62, 64, 65

segments, 47
signif, 59
significance testing, 4
smooth, 3, 10, 61–63, 74
smooth (smooth.roc), 72
smooth.roc, 2, 9, 11, 13, 14, 16, 20, 23, 26,

32, 36, 60–62, 65, 72, 72, 78
smoothed, 29
smoothed ROC curves, 17, 24, 27, 37, 67, 79
sprintf, 51
suppressWarnings, 47, 52

text, 52
this package’s documentation, 17, 21, 23,

24, 26, 27, 29, 30, 37, 66, 68, 78
tkProgressBar, 4
txtProgressBar, 4, 17, 21, 24, 27, 30, 37, 66,

79

uniroot, 55

var, 3, 55, 56, 79
var (var.roc), 78
var.roc, 38, 40, 78
variance, 4, 55

warning, 15, 39, 69, 80

	pROC-package
	are.paired
	aSAH
	auc
	ci
	ci.auc
	ci.coords
	ci.se
	ci.sp
	ci.thresholds
	coords
	cov.roc
	groupGeneric
	has.partial.auc
	lines.roc
	multiclass.roc
	plot.ci
	plot.roc
	power.roc.test
	print
	roc
	roc.test
	smooth.roc
	var.roc
	Index

