Expasy logo

UniProtKB/Swiss-Prot variant pages

UniProtKB/Swiss-Prot Q9H2K8: Variant p.Ser47Asn

Serine/threonine-protein kinase TAO3
Gene: TAOK3
Feedback?
Variant information Variant position: help 47 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Type of variant: help LB/B The variants are classified into three categories: LP/P, LB/B and US.
  • LP/P: likely pathogenic or pathogenic.
  • LB/B: likely benign or benign.
  • US: uncertain significance

Residue change: help From Serine (S) to Asparagine (N) at position 47 (S47N, p.Ser47Asn). Indicates the amino acid change of the variant. The one-letter and three-letter codes for amino acids used in UniProtKB/Swiss-Prot are those adopted by the commission on Biochemical Nomenclature of the IUPAC-IUB.
Physico-chemical properties: help Change from small size and polar (S) to medium size and polar (N) The physico-chemical property of the reference and variant residues and the change implicated.
BLOSUM score: help 1 The score within a Blosum matrix for the corresponding wild-type to variant amino acid change. The log-odds score measures the logarithm for the ratio of the likelihood of two amino acids appearing by chance. The Blosum62 substitution matrix is used. This substitution matrix contains scores for all possible exchanges of one amino acid with another:
  • Lowest score: -4 (low probability of substitution).
  • Highest score: 11 (high probability of substitution).
More information can be found on the following page

Other resources: help Links to websites of interest for the variant.


Sequence information Variant position: help 47 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Protein sequence length: help 898 The length of the canonical sequence.
Location on the sequence: help LHEIGHGSFGAVYFATNAHT S EVVAIKKMSYSGKQTHEKWQ The residue change on the sequence. Unless the variant is located at the beginning or at the end of the protein sequence, both residues upstream (20) and downstream (20) of the variant will be shown.
Residue conservation: help The multiple alignment of the region surrounding the variant against various orthologous sequences.
Human                         LHEIGHGSFGAVYFATNAHTSEVVAIKKMSYSGKQTHEKWQ

Mouse                         LHEIGHGSFGAVYFATNAHTNEVVAVKKMSYSGKQTHEKWQ

Rat                           LHEIGHGSFGAVYFATNAHTNEVVAIKKMSYSGKQTHEKWQ

Chicken                       LHEIGHGSFGAVYFATNSHTNEVVAVKKMSYSGKQTNEKWQ

Xenopus laevis                LHEIGHGSFGAVYFATNSTTNEIVAVKKMSYSGKQMNEKWQ

Sequence annotation in neighborhood: help The regions or sites of interest surrounding the variant. In general the features listed are posttranslational modifications, binding sites, enzyme active sites, local secondary structure or other characteristics reported in the cited references. The "Sequence annotation in neighborhood" lines have a fixed format:
  • Type: the type of sequence feature.
  • Positions: endpoints of the sequence feature.
  • Description: contains additional information about the feature.
TypePositionsDescription
Chain 1 – 898 Serine/threonine-protein kinase TAO3
Domain 24 – 277 Protein kinase
Binding site 53 – 53



Literature citations
Comparative studies of a new subfamily of human Ste20-like kinases: homodimerization, subcellular localization, and selective activation of MKK3 and p38.
Yustein J.T.; Xia L.; Kahlenburg J.M.; Robinson D.; Templeton D.; Kung H.-J.;
Oncogene 22:6129-6141(2003)
Cited for: NUCLEOTIDE SEQUENCE [MRNA]; SELF-ASSOCIATION; TISSUE SPECIFICITY; VARIANT ASN-47; SUBCELLULAR LOCATION; KDS and TAO1, two related proteins with kinase domain homology to STE20, differentially relocate in mitogen stimulated T lymphocytes.
Carter T.G.; Benton B.; Fruhling D.; Monks C.R.F.; Windmiller D.; Kupfer A.; Manfredi J.; Johnson G.L.; Pleiman C.M.;
Cited for: NUCLEOTIDE SEQUENCE [MRNA]; VARIANT ASN-47; Patterns of somatic mutation in human cancer genomes.
Greenman C.; Stephens P.; Smith R.; Dalgliesh G.L.; Hunter C.; Bignell G.; Davies H.; Teague J.; Butler A.; Stevens C.; Edkins S.; O'Meara S.; Vastrik I.; Schmidt E.E.; Avis T.; Barthorpe S.; Bhamra G.; Buck G.; Choudhury B.; Clements J.; Cole J.; Dicks E.; Forbes S.; Gray K.; Halliday K.; Harrison R.; Hills K.; Hinton J.; Jenkinson A.; Jones D.; Menzies A.; Mironenko T.; Perry J.; Raine K.; Richardson D.; Shepherd R.; Small A.; Tofts C.; Varian J.; Webb T.; West S.; Widaa S.; Yates A.; Cahill D.P.; Louis D.N.; Goldstraw P.; Nicholson A.G.; Brasseur F.; Looijenga L.; Weber B.L.; Chiew Y.-E.; DeFazio A.; Greaves M.F.; Green A.R.; Campbell P.; Birney E.; Easton D.F.; Chenevix-Trench G.; Tan M.-H.; Khoo S.K.; Teh B.T.; Yuen S.T.; Leung S.Y.; Wooster R.; Futreal P.A.; Stratton M.R.;
Nature 446:153-158(2007)
Cited for: VARIANTS [LARGE SCALE ANALYSIS] THR-20; ASN-47; TYR-392 AND TYR-727;
Disclaimer: Any medical or genetic information present in this entry is provided for research, educational and informational purposes only. They are not in any way intended to be used as a substitute for professional medical advice, diagnostic, treatment or care.