Expasy logo

UniProtKB/Swiss-Prot variant pages

UniProtKB/Swiss-Prot Q9Y210: Variant p.Asn143Ser

Short transient receptor potential channel 6
Gene: TRPC6
Feedback?
Variant information Variant position: help 143 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Type of variant: help LP/P [Disclaimer] The variants are classified into three categories: LP/P, LB/B and US.
  • LP/P: likely pathogenic or pathogenic.
  • LB/B: likely benign or benign.
  • US: uncertain significance

Residue change: help From Asparagine (N) to Serine (S) at position 143 (N143S, p.Asn143Ser). Indicates the amino acid change of the variant. The one-letter and three-letter codes for amino acids used in UniProtKB/Swiss-Prot are those adopted by the commission on Biochemical Nomenclature of the IUPAC-IUB.
Physico-chemical properties: help Change from medium size and polar (N) to small size and polar (S) The physico-chemical property of the reference and variant residues and the change implicated.
BLOSUM score: help 1 The score within a Blosum matrix for the corresponding wild-type to variant amino acid change. The log-odds score measures the logarithm for the ratio of the likelihood of two amino acids appearing by chance. The Blosum62 substitution matrix is used. This substitution matrix contains scores for all possible exchanges of one amino acid with another:
  • Lowest score: -4 (low probability of substitution).
  • Highest score: 11 (high probability of substitution).
More information can be found on the following page

Variant description: help In FSGS2; increases cation channel activity; does not change the outward peak current; increases significantly the inward peak current amplitude; increases calcium ion transport. Any additional useful information about the variant.
Other resources: help Links to websites of interest for the variant.


Sequence information Variant position: help 143 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Protein sequence length: help 931 The length of the canonical sequence.
Location on the sequence: help SLNVNCVDYMGQNALQLAVA N EHLEITELLLKKENLSRVGD The residue change on the sequence. Unless the variant is located at the beginning or at the end of the protein sequence, both residues upstream (20) and downstream (20) of the variant will be shown.
Residue conservation: help The multiple alignment of the region surrounding the variant against various orthologous sequences.
Human                         SLNVNCVDYMGQNALQLAVANEHLEITELLLKKENLSRVGD

Mouse                         SLNVNCVDYMGQNALQLAVANEHLEITELLLKKENLSRVGD

Bovine                        SLNVNCVDYMGQNALQLAVANEHLEITELLLKKENLSRVGD

Sequence annotation in neighborhood: help The regions or sites of interest surrounding the variant. In general the features listed are posttranslational modifications, binding sites, enzyme active sites, local secondary structure or other characteristics reported in the cited references. The "Sequence annotation in neighborhood" lines have a fixed format:
  • Type: the type of sequence feature.
  • Positions: endpoints of the sequence feature.
  • Description: contains additional information about the feature.
TypePositionsDescription
Chain 1 – 931 Short transient receptor potential channel 6
Topological domain 1 – 438 Cytoplasmic
Repeat 132 – 161 ANK 2
Mutagenesis 125 – 125 N -> A. No effect on RNF24-binding; when associated with A-127; A-128 and A-130.
Mutagenesis 127 – 127 N -> A. No effect on RNF24-binding; when associated with A-125; A-128 and A-130.
Mutagenesis 128 – 128 C -> A. No effect on RNF24-binding; when associated with A-125; A-127 and A-130.
Mutagenesis 130 – 130 D -> A. No effect on RNF24-binding; when associated with A-125; A-127 and A-128.
Mutagenesis 132 – 132 M -> T. Increases cation channel activity. Increases significantly inward and outward currents and does not show channel inactivation. Increases calcium ion transport.



Literature citations
TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function.
Reiser J.; Polu K.R.; Moller C.C.; Kenlan P.; Altintas M.M.; Wei C.; Faul C.; Herbert S.; Villegas I.; Avila-Casado C.; McGee M.; Sugimoto H.; Brown D.; Kalluri R.; Mundel P.; Smith P.L.; Clapham D.E.; Pollak M.R.;
Nat. Genet. 37:739-744(2005)
Cited for: VARIANTS FSGS2 SER-143; THR-270; CYS-895 AND LYS-897; TISSUE SPECIFICITY; A novel TRPC6 mutation that causes childhood FSGS.
Heeringa S.F.; Moeller C.C.; Du J.; Yue L.; Hinkes B.; Chernin G.; Vlangos C.N.; Hoyer P.F.; Reiser J.; Hildebrandt F.;
PLoS ONE 4:E7771-E7771(2009)
Cited for: VARIANTS SER-15 AND VAL-404; VARIANTS FSGS2 SER-143; THR-270 AND 874-LYS--ARG-931 DEL; CHARACTERIZATION OF VARIANT FSGS2 SER-143; MUTAGENESIS OF MET-132; FUNCTION; TRPC6 G757D Loss-of-Function Mutation Associates with FSGS.
Riehle M.; Buescher A.K.; Gohlke B.O.; Kassmann M.; Kolatsi-Joannou M.; Braesen J.H.; Nagel M.; Becker J.U.; Winyard P.; Hoyer P.F.; Preissner R.; Krautwurst D.; Gollasch M.; Weber S.; Harteneck C.;
J. Am. Soc. Nephrol. 27:2771-2783(2016)
Cited for: MUTAGENESIS OF ASN-110; MET-132; 755-GLU--GLY-757; 755-GLU-GLU-756; 826-LYS-LYS-827 AND GLN-889; VARIANTS FSGS2 SER-109; GLN-112; SER-125; SER-143; GLN-175; LEU-218; ALA-395; ASP-757; PRO-780; CYS-895; LEU-895 AND LYS-897; CHARACTERIZATION OF VARIANTS FSGS2 SER-109; GLN-112; SER-125; SER-143; GLN-175; LEU-218; ALA-395; ASP-757; PRO-780; CYS-895; LEU-895 AND LYS-897; VARIANT VAL-404; CHARACTERIZATION OF VARIANT VAL-404; FUNCTION; SUBCELLULAR LOCATION; SUBUNIT;
Disclaimer: Any medical or genetic information present in this entry is provided for research, educational and informational purposes only. They are not in any way intended to be used as a substitute for professional medical advice, diagnostic, treatment or care.