Expasy logo

UniProtKB/Swiss-Prot variant pages

UniProtKB/Swiss-Prot Q6P4F1: Variant p.Leu59Phe

Alpha-(1,3)-fucosyltransferase 10
Gene: FUT10
Feedback?
Variant information Variant position: help 59 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Type of variant: help LB/B The variants are classified into three categories: LP/P, LB/B and US.
  • LP/P: likely pathogenic or pathogenic.
  • LB/B: likely benign or benign.
  • US: uncertain significance

Residue change: help From Leucine (L) to Phenylalanine (F) at position 59 (L59F, p.Leu59Phe). Indicates the amino acid change of the variant. The one-letter and three-letter codes for amino acids used in UniProtKB/Swiss-Prot are those adopted by the commission on Biochemical Nomenclature of the IUPAC-IUB.
Physico-chemical properties: help Change from medium size and hydrophobic (L) to large size and aromatic (F) The physico-chemical property of the reference and variant residues and the change implicated.
BLOSUM score: help 0 The score within a Blosum matrix for the corresponding wild-type to variant amino acid change. The log-odds score measures the logarithm for the ratio of the likelihood of two amino acids appearing by chance. The Blosum62 substitution matrix is used. This substitution matrix contains scores for all possible exchanges of one amino acid with another:
  • Lowest score: -4 (low probability of substitution).
  • Highest score: 11 (high probability of substitution).
More information can be found on the following page

Other resources: help Links to websites of interest for the variant.


Sequence information Variant position: help 59 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Protein sequence length: help 479 The length of the canonical sequence.
Location on the sequence: help EFKSSSLQDGHTKMEEAPTH L NSFLKKEGLTFNRKRKWELD The residue change on the sequence. Unless the variant is located at the beginning or at the end of the protein sequence, both residues upstream (20) and downstream (20) of the variant will be shown.
Residue conservation: help The multiple alignment of the region surrounding the variant against various orthologous sequences.
Human                         EFKSSSLQDGHTKMEEAPTHLNSFLKKEGLTFNRKRKWELD

                              KFKNSDLRAGHAKMEEEPVHLYPLPGKEALILKRKNQLETD

Mouse                         KLKDSNVQDGHRDVEGEPKHLEPFPEKEALALAGRTKVDAG

Rat                           KFKNSDLQDGQKDVEGDPKHLNPLPKKDALALSGRNKVDAG

Bovine                        KFKNSHLKDGHAQMEAEPLHLHPFFNREGLTLNRKKTLAAD

Chicken                       APAVSSLHSG--PLKPDERHASQL-KKNELYSNFRTEPDTD

Xenopus laevis                ETKSSTVINIQKQKK-------PLLKEQS---NSRLRHFKD

Xenopus tropicalis            ETKSFTVIDIKEQKK-------PLLKHIKEKSNSRLRHLKD

Zebrafish                     EHRQ------------------QIKRFEDIKVQANAHVSDV

Sequence annotation in neighborhood: help The regions or sites of interest surrounding the variant. In general the features listed are posttranslational modifications, binding sites, enzyme active sites, local secondary structure or other characteristics reported in the cited references. The "Sequence annotation in neighborhood" lines have a fixed format:
  • Type: the type of sequence feature.
  • Positions: endpoints of the sequence feature.
  • Description: contains additional information about the feature.
TypePositionsDescription
Chain 1 – 479 Alpha-(1,3)-fucosyltransferase 10
Topological domain 32 – 479 Lumenal
Alternative sequence 1 – 62 Missing. In isoform 3.



Literature citations
Composition of Drosophila melanogaster proteome involved in fucosylated glycan metabolism.
Roos C.; Kolmer M.; Mattila P.; Renkonen R.;
J. Biol. Chem. 277:3168-3175(2002)
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 6); VARIANTS PHE-59 AND VAL-368;
Disclaimer: Any medical or genetic information present in this entry is provided for research, educational and informational purposes only. They are not in any way intended to be used as a substitute for professional medical advice, diagnostic, treatment or care.