Expasy logo

UniProtKB/Swiss-Prot variant pages

UniProtKB/Swiss-Prot Q6P0Q8: Variant p.Asp388Glu

Microtubule-associated serine/threonine-protein kinase 2
Gene: MAST2
Feedback?
Variant information Variant position: help 388 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Type of variant: help LB/B The variants are classified into three categories: LP/P, LB/B and US.
  • LP/P: likely pathogenic or pathogenic.
  • LB/B: likely benign or benign.
  • US: uncertain significance

Residue change: help From Aspartate (D) to Glutamate (E) at position 388 (D388E, p.Asp388Glu). Indicates the amino acid change of the variant. The one-letter and three-letter codes for amino acids used in UniProtKB/Swiss-Prot are those adopted by the commission on Biochemical Nomenclature of the IUPAC-IUB.
Physico-chemical properties: help Similar physico-chemical property. Both residues are medium size and acidic. The physico-chemical property of the reference and variant residues and the change implicated.
BLOSUM score: help 2 The score within a Blosum matrix for the corresponding wild-type to variant amino acid change. The log-odds score measures the logarithm for the ratio of the likelihood of two amino acids appearing by chance. The Blosum62 substitution matrix is used. This substitution matrix contains scores for all possible exchanges of one amino acid with another:
  • Lowest score: -4 (low probability of substitution).
  • Highest score: 11 (high probability of substitution).
More information can be found on the following page

Other resources: help Links to websites of interest for the variant.


Sequence information Variant position: help 388 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Protein sequence length: help 1798 The length of the canonical sequence.
Location on the sequence: help DCLDKSRSGLITSQYFYELQ D NLEKLLQDAHERSESSEVAF The residue change on the sequence. Unless the variant is located at the beginning or at the end of the protein sequence, both residues upstream (20) and downstream (20) of the variant will be shown.
Residue conservation: help The multiple alignment of the region surrounding the variant against various orthologous sequences.
Human                         DCLDKSRSGLITSQYFYELQDNLEKLLQDAHERSESSEVAF

Mouse                         DCLDKSRSGLITSHYFYELQENLEKLLQDAHERSESSDVAF

Sequence annotation in neighborhood: help The regions or sites of interest surrounding the variant. In general the features listed are posttranslational modifications, binding sites, enzyme active sites, local secondary structure or other characteristics reported in the cited references. The "Sequence annotation in neighborhood" lines have a fixed format:
  • Type: the type of sequence feature.
  • Positions: endpoints of the sequence feature.
  • Description: contains additional information about the feature.
TypePositionsDescription
Chain 1 – 1798 Microtubule-associated serine/threonine-protein kinase 2
Alternative sequence 327 – 396 Missing. In isoform 2.



Literature citations
Protocadherin LKC, a new candidate for a tumor suppressor of colon and liver cancers, its association with contact inhibition of cell proliferation.
Okazaki N.; Takahashi N.; Kojima S.; Masuho Y.; Koga H.;
Carcinogenesis 23:1139-1148(2002)
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1); VARIANTS GLU-388; MET-659 AND GLY-1551; SUBCELLULAR LOCATION; INTERACTION WITH CDHR2; Patterns of somatic mutation in human cancer genomes.
Greenman C.; Stephens P.; Smith R.; Dalgliesh G.L.; Hunter C.; Bignell G.; Davies H.; Teague J.; Butler A.; Stevens C.; Edkins S.; O'Meara S.; Vastrik I.; Schmidt E.E.; Avis T.; Barthorpe S.; Bhamra G.; Buck G.; Choudhury B.; Clements J.; Cole J.; Dicks E.; Forbes S.; Gray K.; Halliday K.; Harrison R.; Hills K.; Hinton J.; Jenkinson A.; Jones D.; Menzies A.; Mironenko T.; Perry J.; Raine K.; Richardson D.; Shepherd R.; Small A.; Tofts C.; Varian J.; Webb T.; West S.; Widaa S.; Yates A.; Cahill D.P.; Louis D.N.; Goldstraw P.; Nicholson A.G.; Brasseur F.; Looijenga L.; Weber B.L.; Chiew Y.-E.; DeFazio A.; Greaves M.F.; Green A.R.; Campbell P.; Birney E.; Easton D.F.; Chenevix-Trench G.; Tan M.-H.; Khoo S.K.; Teh B.T.; Yuen S.T.; Leung S.Y.; Wooster R.; Futreal P.A.; Stratton M.R.;
Nature 446:153-158(2007)
Cited for: VARIANTS [LARGE SCALE ANALYSIS] PHE-69; GLU-275; GLU-388; ALA-655; MET-659; LEU-991; ARG-1197; GLU-1221; LEU-1246; MET-1304; THR-1463; ALA-1468; GLY-1551; ARG-1673 AND GLU-1703;
Disclaimer: Any medical or genetic information present in this entry is provided for research, educational and informational purposes only. They are not in any way intended to be used as a substitute for professional medical advice, diagnostic, treatment or care.