Expasy logo

UniProtKB/Swiss-Prot variant pages

UniProtKB/Swiss-Prot P21817: Variant p.Leu4838Val

Ryanodine receptor 1
Gene: RYR1
Feedback?
Variant information Variant position: help 4838 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Type of variant: help LP/P [Disclaimer] The variants are classified into three categories: LP/P, LB/B and US.
  • LP/P: likely pathogenic or pathogenic.
  • LB/B: likely benign or benign.
  • US: uncertain significance

Residue change: help From Leucine (L) to Valine (V) at position 4838 (L4838V, p.Leu4838Val). Indicates the amino acid change of the variant. The one-letter and three-letter codes for amino acids used in UniProtKB/Swiss-Prot are those adopted by the commission on Biochemical Nomenclature of the IUPAC-IUB.
Physico-chemical properties: help Similar physico-chemical property. Both residues are medium size and hydrophobic. The physico-chemical property of the reference and variant residues and the change implicated.
BLOSUM score: help 1 The score within a Blosum matrix for the corresponding wild-type to variant amino acid change. The log-odds score measures the logarithm for the ratio of the likelihood of two amino acids appearing by chance. The Blosum62 substitution matrix is used. This substitution matrix contains scores for all possible exchanges of one amino acid with another:
  • Lowest score: -4 (low probability of substitution).
  • Highest score: 11 (high probability of substitution).
More information can be found on the following page

Variant description: help In MHS1. Any additional useful information about the variant.
Other resources: help Links to websites of interest for the variant.


Sequence information Variant position: help 4838 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Protein sequence length: help 5038 The length of the canonical sequence.
Location on the sequence: help AMGVKTLRTILSSVTHNGKQ L VMTVGLLAVVVYLYTVVAFN The residue change on the sequence. Unless the variant is located at the beginning or at the end of the protein sequence, both residues upstream (20) and downstream (20) of the variant will be shown.
Residue conservation: help The multiple alignment of the region surrounding the variant against various orthologous sequences.
Human                         AMGVKTLRTILSSVTHNGKQLVMTVGLLAVVVYLYTVVAFN

Mouse                         AMGVKTLRTILSSVTHNGKQLVMTVGLLAVVVYLYTVVAFN

Rat                           AMGVKTLRTILSSVTHNGKQLVMTVGLLAVVVYLYTVVAFN

Pig                           AMGVKTLRTILSSVTHNGKQLVMTVGLLAVVVYLYTVVAFN

Rabbit                        AMGVKTLRTILSSVTHNGKQLVMTVGLLAVVVYLYTVVAFN

Sequence annotation in neighborhood: help The regions or sites of interest surrounding the variant. In general the features listed are posttranslational modifications, binding sites, enzyme active sites, local secondary structure or other characteristics reported in the cited references. The "Sequence annotation in neighborhood" lines have a fixed format:
  • Type: the type of sequence feature.
  • Positions: endpoints of the sequence feature.
  • Description: contains additional information about the feature.
TypePositionsDescription
Chain 1 – 5038 Ryanodine receptor 1
Transmembrane 4837 – 4857 Helical; Name=5



Literature citations
Novel mutations in C-terminal channel region of the ryanodine receptor in malignant hyperthermia patients.
Oyamada H.; Oguchi K.; Saitoh N.; Yamazawa T.; Hirose K.; Kawana Y.; Wakatsuki K.; Oguchi K.; Tagami M.; Hanaoka K.; Endo M.; Iino M.;
Jpn. J. Pharmacol. 88:159-166(2002)
Cited for: VARIANT MHS1 VAL-4838; VARIANTS ALA-1832; GLU-3756 AND SER-4668; Correlations between genotype and pharmacological, histological, functional, and clinical phenotypes in malignant hyperthermia susceptibility.
Monnier N.; Kozak-Ribbens G.; Krivosic-Horber R.; Nivoche Y.; Qi D.; Kraev N.; Loke J.; Sharma P.; Tegazzin V.; Figarella-Branger D.; Romero N.; Mezin P.; Bendahan D.; Payen J.-F.; Depret T.; Maclennan D.H.; Lunardi J.;
Hum. Mutat. 26:413-425(2005)
Cited for: VARIANTS MHS1 ARG-35; CYS-163; LEU-163; ARG-165; ASN-166; CYS-177; CYS-178; VAL-227; ARG-248; TRP-328; ARG-341; SER-401; HIS-401; MET-403; SER-522; TRP-552; CYS-614; LEU-614; CYS-2163; HIS-2163; MET-2168; MET-2206; ARG-2206; ASP-2344; MET-2346; THR-2350; THR-2428; ARG-2434; HIS-2435; CYS-2454; HIS-2454; CYS-2458; MET-3916; SER-4684; GLN-4737; TRP-4737; ILE-4826; VAL-4838; ILE-4849; ARG-4876; GLU-4939 AND LEU-4973; VARIANTS TRP-2676 AND SER-2787; CHARACTERIZATION OF VARIANTS MHS1 LEU-163; MET-2206; THR-2428; CYS-2454 AND HIS-2454; FUNCTION; TRANSPORTER ACTIVITY; ACTIVITY REGULATION; Increasing the number of diagnostic mutations in malignant hyperthermia.
Levano S.; Vukcevic M.; Singer M.; Matter A.; Treves S.; Urwyler A.; Girard T.;
Hum. Mutat. 30:590-598(2009)
Cited for: VARIANTS MHS1 ARG-13; LYS-226; LEU-367; HIS-530; TYR-544; CYS-1043; HIS-2336; LYS-2404; GLY-2730; LYS-2880; PRO-3217; LYS-3290; TRP-3772; ARG-3806; VAL-4838; ARG-4876 AND THR-4938; VARIANTS GLY-1342; GLY-1352; LEU-1787; ALA-1832; CYS-2060; VAL-2321; VAL-2550; TRP-2676; SER-2787; GLN-3583; GLU-3756 AND LEU-4501;
Disclaimer: Any medical or genetic information present in this entry is provided for research, educational and informational purposes only. They are not in any way intended to be used as a substitute for professional medical advice, diagnostic, treatment or care.