Expasy logo

UniProtKB/Swiss-Prot variant pages

UniProtKB/Swiss-Prot Q96RQ3: Variant p.Arg281Gln

Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial
Gene: MCCC1
Feedback?
Variant information Variant position: help 281 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Type of variant: help LP/P [Disclaimer] The variants are classified into three categories: LP/P, LB/B and US.
  • LP/P: likely pathogenic or pathogenic.
  • LB/B: likely benign or benign.
  • US: uncertain significance

Residue change: help From Arginine (R) to Glutamine (Q) at position 281 (R281Q, p.Arg281Gln). Indicates the amino acid change of the variant. The one-letter and three-letter codes for amino acids used in UniProtKB/Swiss-Prot are those adopted by the commission on Biochemical Nomenclature of the IUPAC-IUB.
Physico-chemical properties: help Change from large size and basic (R) to medium size and polar (Q) The physico-chemical property of the reference and variant residues and the change implicated.
BLOSUM score: help 1 The score within a Blosum matrix for the corresponding wild-type to variant amino acid change. The log-odds score measures the logarithm for the ratio of the likelihood of two amino acids appearing by chance. The Blosum62 substitution matrix is used. This substitution matrix contains scores for all possible exchanges of one amino acid with another:
  • Lowest score: -4 (low probability of substitution).
  • Highest score: 11 (high probability of substitution).
More information can be found on the following page

Variant description: help In MCC1D. Any additional useful information about the variant.
Other resources: help Links to websites of interest for the variant.


Sequence information Variant position: help 281 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Protein sequence length: help 725 The length of the canonical sequence.
Location on the sequence: help FGDHHGNAVYLFERDCSVQR R HQKIIEEAPAPGIKSEVRKK The residue change on the sequence. Unless the variant is located at the beginning or at the end of the protein sequence, both residues upstream (20) and downstream (20) of the variant will be shown.
Residue conservation: help The multiple alignment of the region surrounding the variant against various orthologous sequences.
Human                         FGDHHGNAVYLFERDCSVQRRHQKIIEEAPAPGIKSEVRKK

Mouse                         FGDHHGNAVYLFERDCSVQRRHQKIIEEAPAPGINPEVRRK

Rat                           FGDHHGNAVYLFERDCSVQRRHQKIIEEAPAPGIDPEVRRR

Slime mold                    FADRHGNCVHLFERDCSVQRRHQKIIEEAPAPHLSEELRKK

Sequence annotation in neighborhood: help The regions or sites of interest surrounding the variant. In general the features listed are posttranslational modifications, binding sites, enzyme active sites, local secondary structure or other characteristics reported in the cited references. The "Sequence annotation in neighborhood" lines have a fixed format:
  • Type: the type of sequence feature.
  • Positions: endpoints of the sequence feature.
  • Description: contains additional information about the feature.
TypePositionsDescription
Chain 42 – 725 Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial
Domain 48 – 494 Biotin carboxylation
Domain 167 – 364 ATP-grasp
Binding site 282 – 282



Literature citations
Mutational spectrum in eight Korean patients with 3-methylcrotonyl-CoA carboxylase deficiency.
Cho S.Y.; Park H.D.; Lee Y.W.; Ki C.S.; Lee S.Y.; Sohn Y.B.; Park S.W.; Kim S.H.; Ji S.; Kim S.J.; Choi E.W.; Kim C.H.; Ko A.R.; Paik K.H.; Lee D.H.; Jin D.K.;
Clin. Genet. 81:96-98(2012)
Cited for: VARIANTS MCC1D ARG-276 AND GLN-281; A single mutation in MCCC1 or MCCC2 as a potential cause of positive screening for 3-methylcrotonyl-CoA carboxylase deficiency.
Morscher R.J.; Grunert S.C.; Burer C.; Burda P.; Suormala T.; Fowler B.; Baumgartner M.R.;
Mol. Genet. Metab. 105:602-606(2012)
Cited for: VARIANTS MCC1D LYS-56; GLN-281; PRO-380 AND SER-385; 3-methylcrotonyl-CoA carboxylase deficiency: clinical, biochemical, enzymatic and molecular studies in 88 individuals.
Gruenert S.C.; Stucki M.; Morscher R.J.; Suormala T.; Buerer C.; Burda P.; Christensen E.; Ficicioglu C.; Herwig J.; Koelker S.; Moeslinger D.; Pasquini E.; Santer R.; Schwab K.O.; Wilcken B.; Fowler B.; Yue W.W.; Baumgartner M.R.;
Orphanet J. Rare Dis. 7:31-54(2012)
Cited for: VARIANTS MCC1D GLU-46; LYS-56; LEU-65; HIS-123; MET-125; LYS-134; ARG-160; VAL-180; PRO-187; TRP-232; ASP-268; GLN-281; GLY-288; VAL-289; VAL-291; ARG-325; PRO-372; ASP-379; SER-379; PRO-380; SER-385; MET-434; MET-439; MET-460; HIS-532; PHE-535 AND 566-VAL-THR-567 DEL; CHARACTERIZATION OF VARIANTS MCC1D GLY-288; ASP-379 AND MET-434;
Disclaimer: Any medical or genetic information present in this entry is provided for research, educational and informational purposes only. They are not in any way intended to be used as a substitute for professional medical advice, diagnostic, treatment or care.