Expasy logo

UniProtKB/Swiss-Prot variant pages

UniProtKB/Swiss-Prot Q96IJ6: Variant p.Thr334Met

Mannose-1-phosphate guanylyltransferase regulatory subunit alpha
Gene: GMPPA
Feedback?
Variant information Variant position: help 334 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Type of variant: help LP/P [Disclaimer] The variants are classified into three categories: LP/P, LB/B and US.
  • LP/P: likely pathogenic or pathogenic.
  • LB/B: likely benign or benign.
  • US: uncertain significance

Residue change: help From Threonine (T) to Methionine (M) at position 334 (T334M, p.Thr334Met). Indicates the amino acid change of the variant. The one-letter and three-letter codes for amino acids used in UniProtKB/Swiss-Prot are those adopted by the commission on Biochemical Nomenclature of the IUPAC-IUB.
Physico-chemical properties: help Change from medium size and polar (T) to medium size and hydrophobic (M) The physico-chemical property of the reference and variant residues and the change implicated.
BLOSUM score: help -1 The score within a Blosum matrix for the corresponding wild-type to variant amino acid change. The log-odds score measures the logarithm for the ratio of the likelihood of two amino acids appearing by chance. The Blosum62 substitution matrix is used. This substitution matrix contains scores for all possible exchanges of one amino acid with another:
  • Lowest score: -4 (low probability of substitution).
  • Highest score: 11 (high probability of substitution).
More information can be found on the following page

Variant description: help In AAMR. Any additional useful information about the variant.
Other resources: help Links to websites of interest for the variant.


Sequence information Variant position: help 334 The position of the amino-acid change on the UniProtKB canonical protein sequence.
Protein sequence length: help 420 The length of the canonical sequence.
Location on the sequence: help GEGVRLRESIVLHGATLQEH T CVLHSIVGWGSTVGRWARVE The residue change on the sequence. Unless the variant is located at the beginning or at the end of the protein sequence, both residues upstream (20) and downstream (20) of the variant will be shown.
Residue conservation: help The multiple alignment of the region surrounding the variant against various orthologous sequences.
Human                         GEGVRLRESIVLHGATLQEHTCVLHSIVGWGSTVGRWARVE

Mouse                         GEGVRLRESIVLHGATLQEHTCVLHSIVGWGSTVGRWARVE

Rat                           GEGVRLRESIVLHGATLQEHTCVLHSIVGWGSTVGRWARVE

Pig                           GEGVRLRESIVLHGATLQEHTCVLHSIVGWGSTVGRWARVE

Xenopus tropicalis            GAGVRIRESIVLHGAVLQDHSCVLNTIVGWDSTVGRWARVE

Drosophila                    GPGVRIRESIVLEQAQILDHTLVLHSIVGRGSTIGAWARVE

Slime mold                    GKGVRVIHSIILDQTEIKDHACIIYSIIGWQSLIGVWARIE

Sequence annotation in neighborhood: help The regions or sites of interest surrounding the variant. In general the features listed are posttranslational modifications, binding sites, enzyme active sites, local secondary structure or other characteristics reported in the cited references. The "Sequence annotation in neighborhood" lines have a fixed format:
  • Type: the type of sequence feature.
  • Positions: endpoints of the sequence feature.
  • Description: contains additional information about the feature.
TypePositionsDescription
Chain 1 – 420 Mannose-1-phosphate guanylyltransferase regulatory subunit alpha
Region 273 – 420 Hexapeptide repeat domain
Mutagenesis 318 – 318 R -> E. Disrupts the interaction with GMPPB and other GMPPA molecules.
Mutagenesis 350 – 350 W -> A. Disrupts the interaction with GMPPB and other GMPPA molecules and reduces the efficiency of GMPPB allosteric inhibition; when associated with A-352.
Mutagenesis 352 – 352 R -> A. Disrupts the interaction with GMPPB and other GMPPA molecules and reduces the efficiency of GMPPB allosteric inhibition; when associated with A-350.



Literature citations
Mutations in GMPPA cause a glycosylation disorder characterized by intellectual disability and autonomic dysfunction.
Koehler K.; Malik M.; Mahmood S.; Giesselmann S.; Beetz C.; Hennings J.C.; Huebner A.K.; Grahn A.; Reunert J.; Nurnberg G.; Thiele H.; Altmuller J.; Nurnberg P.; Mumtaz R.; Babovic-Vuksanovic D.; Basel-Vanagaite L.; Borck G.; Bramswig J.; Muhlenberg R.; Sarda P.; Sikiric A.; Anyane-Yeboa K.; Zeharia A.; Ahmad A.; Coubes C.; Wada Y.; Marquardt T.; Vanderschaeghe D.; Van Schaftingen E.; Kurth I.; Huebner A.; Hubner C.A.;
Am. J. Hum. Genet. 93:727-734(2013)
Cited for: VARIANTS AAMR ASP-182; MET-334; PRO-334; PRO-390 AND THR-401; FUNCTION; SUBCELLULAR LOCATION; TISSUE SPECIFICITY;
Disclaimer: Any medical or genetic information present in this entry is provided for research, educational and informational purposes only. They are not in any way intended to be used as a substitute for professional medical advice, diagnostic, treatment or care.