It did it its way

by Vivienne Baillie Gerritsen

Temperatures can get cold. And living organisms have to find ways of keeping themselves warm. Humans use clothes. Polar bears grow fur. Whales are lined with blubber. And many animals avoid the cold by migrating to warmer parts of the planet. But for cold-blooded animals - such as fish - things are sometimes more complicated. Especially when they live in waters which are ice-cold, on a seasonal basis or not. The formation of ice in an organism is dangerous because it can damage cells irreversibly. To solve this problem, Nature thought up an antifreeze system which hinders ice formation: antifreeze proteins. There are all sorts of antifreeze proteins but one is particularly special - Maxi - and keeps fish alive in waters as cold as - 1.9 °C. As its name suggests, it is much larger than the other antifreeze proteins known to date, but it also behaves very differently. What is more, its 3D structure has shed a very different light on the way the core of a protein is formed.

SwissProt
Protein Spotlight (ISSN 1424-4721) is a monthly review written by the Swiss-Prot team of the SIB Swiss Institute of Bioinformatics. Spotlight articles describe a specific protein or family of proteins on an informal tone. Follow us: Subscribe · Twitter · Facebook

More from Protein Spotlight

Tales From A Small World

Tales From A Small World cover

Tales From A Small World is a collection of the first hundred articles which originally appeared on this site. Published in September 2009, the book is enriched by poems from the Dublin poet, Pat Ingoldsby. Learn more and order your copy online.

Journey Into A Tiny World

Journey Into A Tiny World cover

« Globin and Poietin set out to save Lily's life. But time is running short and they can't find the marrow... Here is the tale of their courage, fun and laughter on a journey that takes them deep into the tiniest of worlds.» For children. Learn more and order your copy online.

Snapshot : twinfilin

We take our three dimensional structure for granted. Yet were it not for our skeleton, we would probably be quite flat. Cells also have a distinctive shape thanks to their skeleton – the cytoskeleton – the greater part of which is made up of actin filaments, which are assemblies of thousands of globular actin monomers. Like any scaffolding, cytoskeletons need builders to be erected; the protein twinfilin is one such builder.

A little bit of praise!

“I recently stumbled upon your columns. Let me congratulate you on achieving the near impossible, for your articles have enabled me to successfully marry IT with the Life Sciences and better explain the concepts of bioinformatics to those who are not in the know of the field.

Your articles are very well written, lucid, and contain just enough information to excite the reader to want to learn more about the topic being discussed. They fall in a very rare category where they are accessible to everyone, from the undergraduate students to research students who want to have a basic idea of the topics being discussed. Some of your articles, like "Our hollow architecture" and "Throb" are outstanding pieces.

I would highly recommend your articles as a necessary reading in undergrad classes to get students inspired about the various avenues of research.”

— Rohan Chaubal, Senior Researcher in Genomics, July 2011

Thank you to all the artists who have given us the permission to reproduce their work on our web site!